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We study the problem of dynamical response and plasma mode dispersion in strongly coupled two-
dimensional Coulomb fluids~2DCFs! in the weakly degenerate quantum domain. Adapting the nonlinear
response function approach of Golden and Kalman@Phys. Rev. A19, 2112~1979!# to the 2DCF, we construct
a self-consistent approximation scheme for the calculation of the density response functions and plasma mode
dispersion at long wavelengths. The basic ingredients in the construction are~i! the first kinetic equation in the
Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy,~ii ! the velocity-average-approximation~VAA ! hypoth-
esis, ~iii ! the quadratic fluctuation-dissipation theorem, and~iv! the dynamical superposition approximation
~DSA! closure hypothesis. The reliability of the VAA-DSA theory can be assessed by observing that the
principal coupling correction to the 2D temperature-dependent Lindhard function is identified as being pre-
cisely the part of the third-frequency-moment sum-rule coefficient proportional to the potential energy.
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I. INTRODUCTION

This paper addresses the problem of dynamical respo
and plasma mode dispersion in strongly coupled tw
dimensional Coulomb fluids in the weakly degenerate qu
tum domain. External magnetic fields are assumed to be
tirely absent.

The two-dimensional Coulomb fluid~2DCF! is an ideal-
ized model one-component plasma~OCP! in which charged
particle motions in a uniform rigid neutralizing backgroun
are restricted to a two-dimensional~2D! plane of zero thick-
ness. The charges interact via then(r )5e2/(esr ) Coulomb
potential,r being the separation distance in the plane andes

the dielectric constant of the substrate. In the classical\
→0) domain, the coupling parameterGcl5be2/(esa) is the
customary measure of the strength of the particle corr
tions; b215kBT is the 2D thermal energy anda51/Apn is
the interparticle distance. In the zero-temperature quan
domain the customary coupling parameter isr s5a/a0 ; a0

5\2es /(m* e2) is the effective Bohr radius withm*
the effective mass. For arbitrary degeneracy,G
5e2/(esa^Ekin&0) is the appropriate measure of the coupli
strength,̂ Ekin&0 being the average kinetic energy for a 2DC
of noninteracting particles;G→Gcl as\→0 andG→2r s as
T→0. The 2DCF is said to be strongly coupled whenG
.1.

Over the past three decades a variety of theoretical
proaches have been put forward for the calculation of
dynamical response and plasma mode behavior in
strongly coupled 2DCF. In the classical domain, formulas
the density response function and dispersion and dampin
1063-651X/2001/64~4!/046125~14!/$20.00 64 0461
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the plasma mode excitations have been derived~i! by follow-
ing a microscopic hydrodynamic approach@1#, ~ii ! by adapt-
ing the conventional Singwi-Tosi-Land-Sjolander~STLS! @2#
mean field theory approach to the 2D one-component pla
@3#, ~iii ! by following an approach that combines the qu
dratic fluctuation-dissipation theorem~QFDT! with linear-
ized moment equations for the plasma density, fluid veloc
pressure tensor, and heat-flow tensor@4#, and~iv! by adapt-
ing the quasilocalized charge approximation~QLCA! @5# to
the 2D OCP@6#. In the zero-temperature quantum doma
the density response function has been calculated and
mon dispersion curves have been generated~v! by using the
STLS approach—or a sum-rule version of it—with the 2
Vlasov density response function replaced by the Lindh
function @7–9#, ~vi! via a 2D quantum kinetic equation trea
ment using a Mori memory function formalism that tak
account of the dynamics of the exchange-correlation h
surrounding each electron@10#, and ~vii ! more recently, by
application of aquantumversion@11# of the STLS approach
to the 2D electron fluid@12#.

The calculation of the dynamical response and plas
mode dispersion in the strongly coupled 2DCF at degener
levels somewhere between the classical and zero-temper
limits, is, to the best of our knowledge, a problem that h
received very little attention. The present paper begins
explore this problem by considering the above calculation
the weakly degenerate quantum domainbeF5bpn\2/m*
<(beF)max, where we take (beF)max'0.1– 0.2. Examples
of the strongly coupled 2DCF in the weakly degener
quantum domain are~i! the 2D hole layer in a
GaAs/AlxGa12xAs heterostructure~n52.531010cm22, T
55.78 K, m* 50.6me , beF50.2, G56.17! @13# and~ii ! the
©2001 The American Physical Society25-1
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DAS, GOLDEN, AND GREEN PHYSICAL REVIEW E64 046125
2D electron layer trapped on the free surface of liquid heli
~n5109 cm22, T52.77 K, beF50.01,G533.7! @14#.

In calculating the dynamical response, we will suppo
that a classical kinetic theory based response function
proach, proposed some time ago by Golden and Kalm
~GK! @15# for the 3D OCP, can be adapted to the wea
degenerate 2DCF of the present paper. This adaptation
sonably well approximates the dynamics provided thatbeF
is sufficiently small and exchange effects are properly ta
into account. In Sec. III we propose a strategy suggested
the third-frequency-moment sum rule for incorporating e
change in the modified GK approach.

The principal building blocks for construction of th
modified approach are~i! the first kinetic equation of the
Bogoliubov-Born-Green-Kirkwood-Yvon~BBGKY! hierar-
chy linking the one- and two-particle distribution function
~labeled f 1 and f 2! and ~ii ! the classical 2D QFDT linking
quadratic response and three-point structure functions@16#.
The central hypothesis of the theory, the velocity-avera
approximation~VAA ! @see Eq.~20! below#, supposes that the
non-RPA ~random-phase approximation! part of f 2 can be
replaced by a suitably chosen momentum average.

In the GK theory, a chain of density-response-functi
equations can be generated solely from thefirst BBGKY
kinetic equation by combining it with the hierarchy o
fluctuation-dissipation theorems. This combination is ma
possible by the VAA, which converts the momentum
dependentf 2 @in kinetic equation~19!# into a more tractable
momentum-independent density-density nonequilibri
two-point function@see Eq.~21!#. The first equation in the
VAA chain links linear and quadratic response functions,
second links quadratic and cubic response functions, an
on. Depending upon the degree of accuracy desired, one
truncate the chain at any level. If, for example, all equatio
after the first one are dropped, then closure is effected
approximating the quadratic density response function
terms of linear ones. This is the closure to be followed in
present paper. This procedure, first developed by GK for
3D OCP@15# and referred to as the dynamical superposit
approximation~DSA! is presented in Sec. V. The outcome
a self-consistent expression@Eqs. ~29! and ~67!# for the dy-
namical density response function featuring adynamicallo-
cal field correction that exactly reproduces the potential
ergy part@Eqs.~33! and~35!# of the third-frequency-momen
sum-rule coefficient@17# in the high-frequency limit. This
compliance with the sum rule makes it possible to incor
rate exchange in the classical VAA-DSA formalism in a na
ral way, since the combined exchange-correlation effect
sides in the potential energy through the static struct
function @see Eq.~30!#.

The plan of the paper is as follows. In Sec. II we intr
duce the dielectric and full and screened linear and quad
density response functions via constitutive relations. Thr
point static and dynamical structure functions are next in
duced and related to the quadratic response functions via
QFDT. The development of the approximation scheme
then carried out in three stages in Secs. III, IV, and V. In
stage-1 calculation, we establish the fundamental VA
BBGKY kinetic equation for the weakly degenerate 2DC
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We next linearize and convert its right-hand-side nonequi
rium two-point density correlation function into equilibrium
three-point structure functions via routine statistical m
chanical linear response calculations. The resulting Eq.~29!
for the screened linear response function features these l
as theG-dependent correction to the Lindhard function.
the stage-2 calculation~Sec. IV!, we eliminate the three-
point structure functions in favor of the more accessible f
and screened quadratic response functions by applicatio
the QFDT. Self-consistency is then guaranteed at long wa
lengths in the stage-3 calculation of Sec. V by approximat
the quadratic density response functions in terms of lin
ones. The first principal result of this paper, the non-R
coupling correction ~67!, is expressed in terms of th
exchange-correlation energy. The second principal resu
simple analytical formula for the long-wavelength dispersi
of the plasma mode, is derived in Sec. VI from Eqs.~29! and
~67!. Conclusions and discussion follow in Sec. VII.

II. RESPONSE AND STRUCTURE FUNCTIONS

In this section we introduce quantities and relations c
tral to the development of the VAA approach, namely,~i!
linear and quadratic response functions;~ii ! two- and three-
point structure functions;~iii ! the QFDT linking the qua-
dratic response and three-point structure functions.

Let U tot(r ,t)5Û(r ,t)1Upol(r ,t) be the total~screened!
potential energy response to a weak external potentialF̂(r ,t)
acting at the in-plane (z50) point r within the 2D Coulomb
fluid; Upol is the induced~polarization! potential energy re-
sponse to external potential energyÛ(r ,t)5eF̂(r ,t); e5
2ueu for an electron fluid ande51ueu for a hole fluid. The
customary density response functionsx(q,v) ~full ! and
xsc(q,v) ~screened! are defined by the linear constitutiv
relations

^nq&
~1!~v!5x~q,v!Û~q,v! ~1!

5xsc~q,v!U tot
~1!~q,v!; ~2!

the superscript~1! denotes a first-order response to the ext
nal driving potentialF̂; nq5( i exp(2iq•xi) is the 2D Fou-
rier transform of the microscopic densityn(r )5( jd(r2xj )
and the angular brackets denote the ensemble average
in-plane wave vectorq5(qx ,qy). With the aid ofxsc(q,v)
andn(q)52pe2/(esq) @the Fourier transform of the 2D po
tential e2/(esr )# the dielectric response function is then

e~q,v!512n~q!xsc~q,v!. ~3!

The x-xsc relationship

x~q,v!5
xsc~q,v!

e~q,v!
~4!

and the well-known expression

1

e~q,v!
511n~q!x~q,v! ~5!
5-2
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DYNAMICAL THEORY OF STRONGLY COUPLED TWO- . . . PHYSICAL REVIEW E 64 046125
for the inverse dielectric response function readily follo
from Eqs.~1!–~3!.

We next define full and screened quadratic density
sponse functions via the constitutive relations

^nq&
~2!~v!5

1

V (
q8

E
2`

` dv8

2p
x~q8,v8,q2q8,v2v8!

3Û~q8,v8!Û~q2q8,v2v8!, ~6!

^nq&
~2!~v!5xsc~q,v!Upol

~2!~q,v!

1
1

V (
q8

E
2`

` dv8

2p
xsc~q8,v8;q2q8,v2v8!

3U tot
~1!~q8,v8!U tot

~1!~q2q8,v2v8!; ~7!

V is the large but bounded area of the 2D system. The q
dratic counterpart of Eq.~4!,

x~q8,v8;q2q8,v2v8!

5
xsc~q8,v8;q2q8,v2v8!

e~q,v!e~q8,v8!e~q2q8,v2v8!
, ~8!

follows from Eqs.~6!, ~7!, and ~3!, the constitutive relation
U tot

(1)(q,v)5Û(q,v)/e(q,v), and the 2D second-order~in

Û! Poisson equationUpol
(2)(q,v)5n(q)^nq&

(2)(v).
The quadratic fluctuation-dissipation relations@16#

S~q82q,t150;q,t250!

5E
2`

` dv8

2p E
2`

` dv9

2p
S~q82q,v8;q,v9!

5
2

nb2 Rex~q82q,v850;q,v950!, ~9!

S~q82q,v8;q,v9!

52
4

nb2 ReF 1

v8v9
x~q82q,v8;q;v9!

2
1

v8~v81v9!
x~2q8,2v82v9;q82q,v8!

2
1

v9~v81v9!
x~q,v9;2q8,2v82v9!G ~10!

connect the quadraticx’s to the three-point structure functio

S~q82q,t1 ;q,t2!

5
1

N
^dnq8~0!dnq2q8~2t1!dn2q~2t2!&~0!; ~11!

the dn’s are microscopic fluctuating densities~e.g., dnq
5nq2Ndq! and the^¯& (0) brackets denote ensemble ave
aging over the equilibrium system. The useful triangle sy
metry relations
04612
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x~q2q8,0;2q,v!5x~q8,v;q2q8,0!, ~12!

x~2q,v;q8,0!5x~q8,0;q2q8,v! ~13!

are a consequence of the quadratic fluctuation-dissipa
theorem~10! and the Kramers-Kronig relations that the fo
quadraticx’s satisfy.

The classical quadratic fluctuation-dissipation relatio
~9! and~10! are central to the development of the theory a
will be implemented in the stage-2 calculation of Sec.
The O(b\v/2) quantum correction@18# to the classical
QFDT has been dropped in order to keep the mathema
tractable and to make possible the pivotal developmen
Sec. IV. This approximation would appear to be at the cos
some accuracy. However, at the weak degenera
(b«Fumax'0.1– 0.2) and low frequencies~the 2D plasma
frequency! of interest in this paper, the cost can be kept to
minimum by confining our analysis to the long-waveleng
domain (qa,1). In any case, the approximation does n
affect the essential qualitative feature of the 2D-plasma m
dispersion, namely, that exchange-correlation effects ac
depress the mode frequency below its RPA value. This is
some extent borne out by the favorable quantitative comp
son for qa values up to 0.5 between our Sec. VI plasm
frequency calculation atbeF50.2 andG510 and the Ref.
@10# quantum kinetic equation calculation at zero tempe
ture and the equivalent couplingr s'G/255.

III. STAGE-1 CALCULATION: VAA LINEAR RESPONSE

In this section we formulate the semiclassical VAA kine
equation and from it we establish a relationship betwe
x(q,v) and the three-point structure function. We then sh
that this relation very nearly satisfies the third-frequen
moment sum rule for arbitrary values of the coupling para
eter.

Let f 1(r ,k,t) and f 2(r ,k;r 8,k8;t) be one- and two-
particle distribution functions;r5(x,y), r 85(x8,y8) and
\k5(\kx ,\ky), \k85(\kx8 ,\ky8) are in-plane (z50) posi-
tion and momentum coordinates. The distribution functio
are normalized toN and N(N21) consistent with the mo-
ments

1

2p2 E dk f 1~r ,k,t !5^n~r !&~ t !, ~14!

1

~2p2!2 E dkE dk8 f 2~r ,k;r 8,k8;t !

5^n~r !n~r 8!&~ t !2d~r2r 8!^n~r !&~ t !; ~15!

n(r ) andn(r 8) in Eq. ~15! are equal-time microscopic den
sities and the notation̂¯&(t) refers to the time evolution
carried by the Liouville distribution function.

The unperturbed state of the 2DCF is characterized by
equilibrium distributions

f 1
~0!~k!5

1

11exp$b@e~k!2m0#%
, ~16!
5-3
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f 2
~0!~r ,k;r 8,k8!5 f 1

~0!~k! f 1
~0!~k8!@11h~ ur2r 8u!#; ~17!

e(k)5\2k2/(2m* ); the relation bm0[m0 /(kBT)
5 ln@exp(beF)21#, derived from Eqs.~14! and~16!, connects
the chemical potentialm0 for the noninteracting 2DCF to th
2D Fermi energy«F5pn\2/m* ; n5N/V is the density of
the unperturbed system; and

h~ ur2r 8u!5
1

N (
q

@S~q!21#exp@ iq•~r2r 8!# ~18!

is the equilibrium pair correlation function defined in term
of the static two-point structure functionS(q)[S(q,t50).

The introduction of the weak potential energy perturb
tion Û(r ,t) into the equilibrium system brings about the i
cremental responsesd f 1(r ,k,t)5 f 1(r ,k,t)2 f 1

(0)(k) and
d f 2(r ,k;r 8,k8;t)5 f 2(r ,k;r 8,k8;t)2 f 2

(0)(r ,k;r 8,k8); d f 1

5 f 1
(1)1 f 1

(2)1¯ and d f 25 f 2
(1)1 f 2

(2)
¯ . We wish to calcu-

late the average first-order density response^nq&
(1)(t) from

the first BBGKY kinetic equation

L f 1~r ,k,t ![F ]

]t
1

\k

m*
•

]

]r
2S ]Û~r ,t !

]r D • 1

\

]

]kG f 1~r ,k,t !

5
1

\

]

]k
•

1

2p2 E dr 8E dk8 f 2~r ,k;r 8,k8;t !

3
]

]r

e2

ur2r 8u
. ~19!

Paralleling the Ref.@15# procedure, we first convert the righ
hand side of Eq.~19! into a more tractable momentum
independent nonequilibrium two-point correlation functio
This is accomplished by supposing thatf 2 is well described
by its momentum average in the restricted sense where
one of its momentum arguments is averaged out, viz.,

f 2~r ,k;r 8,k8;t !5
1

2

f 1~r ,k,t !

^n~r !&~ t !

1

2p2 E dk̄ f 2~r ,k̄;r 8,k8;t !

1
1

2

f 1~r 8,k8,t !

^n~r 8!&~ t !

1

2p2

3E dk̄8 f 2~r ,k;r 8,k̄8;t !. ~20!

The VAA ansatz~20! is exact when the system is in therm
dynamic equilibrium@i.e., equilibrium distributions~16! and
~17! rigorously satisfy Eq.~20!#. The resulting momentum
space double integral

f 1~r ,k,t !

^n~r !&~ t !

1

~2p2!2 E dk̄E dk8 f 2~r ,k̄;r 8,k8;t !,

which replaces (1/2p2)*dk8 f 2(r ,k;r 8,k8;t) in Eq. ~19!,
can now be expressed in terms of the nonequilibrium tw
point function^n(r )n(r 8)&(t) via Eq.~15!. The VAA kinetic
equation accordingly takes the form
04612
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L f 1~r ,k,t !5
1

\

]

]k

f 1~r ,k,t !

^n~r !&~ t !
•E dr 8^n~r !n~r 8!&~ t !

3
]

]r

e2

ur2r 8u
. ~21!

In the classical limit, Eq.~21! is known to be exact when th
system is driven by a static perturbation. This follows fro
the fact that the perturbed distribution function in the pre
ence of a static external perturbation is still a canonical d
tribution in terms of the perturbed Hamiltonian, and that
factorizes into momentum- and coordinate-dependent co
butions@19#.

The routine calculation of the first-order average dens
response consists in linearizing Eq.~21!, taking its Fourier
transform, solving forf 1

(1)(q,k;v), and then taking the den
sity moment per Eq.~14!. One obtains

^nq&
~1!~v!5x̄0~q,v!F Û~q,v!1n~q!

1

N (
q8

S q•q8

qq8 D
3^nq8 nq2q8&

~1!~v!G . ~22!

The semiclassical Vlasov screened response function

x̄0~q,v!52
1

2p2\ E dk
~q•]/]k! f 1

~0!~k!

v2~\/m* !q•k
~23!

calculated from Eq. ~19! in the f 2(r ,k;r 8,k8;t)
5 f 1(r ,k,t) f 1(r 8,k8,t) uncorrelated approximation, in fac
is the long-wavelength limit of the Lindhard function

x0~q,v!5
2

\V (
k

f 1
~0!
„k2~q/2!…2 f 1

~0!
„k1~q/2!…

v2~\/m* !q•k
.

~24!

The nonequilibrium two-point function
^nq8 nqÀq8&

(1)(v), in turn, can be expressed in terms o
equilibrium three-point functions through a straightforwa
statistical mechanical linear response calculation. One
tains

^nq8 nq2q8&
~1!~v!5N~dq2q81dq8!^nq&

~1!~v!

2bnJ~q,q8,v!Û~q,v!, ~25!

J~q,q8,v!5S~q82q,t50;q,t50!

1
iv

2p E
2`

`

dv8E
2`

`

dv9 d1~v2v9!

3S~q82q,v8;q,v9!, ~26!

whered6(x)5(1/2)d(x)6( i /2p)P(1/x); the P symbol de-
notes the Cauchy principal value. The VAAfull density re-
sponse function expression

x~q,v!5x0
RPA~q,v!@12n~q!K~q,v!# ~27!
5-4
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then results from Eqs.~22!, ~25!, and ~1! with x̄0(q,v) re-
placed byx0(q,v); x0

RPA(q,v)5x0(q,v)/e0(q,v) is the re-
sponse in the RPA,e0(q,v)512n(q)x0(q,v) being the
Lindhard dielectric function. In the classical VAA, the ke
particle-particle correlation effects beyond the RPA reside
the coupling correction

K~q,v![
b

V (
q8

S q•q8

qq8 DJ~q,q8,v! ~28!

with J(q,q8,v) given by Eq. ~26!. The equally compac
VAA expression for thescreeneddensity response,

xsc~q,v!5x0~q,v!@12n~q!Ksc~q,v!#, ~29!

readily follows from Eqs.~27! and ~4! and introduction of
the screened coupling correctionKsc(q,v) via the definition
K(q,v)5Ksc(q,v)/e(q,v) paralleling Eq.~4!. In adapting
the classical VAA formalism to the weakly degenerate qu
tum domain, we are, in effect, supposing that t
temperature-dependent exchange also resides in the t
point structure functions that comprise theKsc and K cou-
pling corrections. This completes the stage-1 derivation.

The VAA screened coupling correction, in its final lon
wavelength form~67! below, is expressed in terms of th
static two-point structure functionS(q)[S(q,t50) via the
potential energy per particle

V5
1

2V (
q8

n~q8!@S~q8!21#. ~30!

Unfortunately, static structure function and equilibrium p
correlation function data for the 2DCF in the weakly dege
erate quantum domain are unavailable so that the pote
energy input to Eq.~67! has to be determined by some oth
means. One strategy is proposed below in connection w
the third-frequency-moment sum-rule@17# analysis.

At high frequencies, the VAA expression forx(q,v) very
nearly reproduces the third-frequency-moment sum-rule
efficient. To demonstrate this, we need to evaluatex(q,v) in
the v→` limit. Following the procedure of Ref.@15#, one
obtains

ReJ~q,q8,v→`!

5 lim
v→`

1

v2 F S ]

]t8
1

]

]t9D
2

S~q8,t8;q2q8,t9!G
t85t950

52 lim
v→`

1

bm* v2 @~q•q8!S~ uq2q8u!

1q•~q2q8!S~q8!#, ~31!

whence the high-frequency expression
04612
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Rex~q,v→`!5 lim
v→`

H nq2

m* v2 1
nq2

m* v4 F S \q2

2m* D 2

1
3q2^Ekin&0

m*
1v2D

2 ~q!1D~q!G J ,

~32!

D~q!5
1

m* V (
q8

~q•q8!2

q2 n~q8!@S~ uq2q8u!2S~q8!#,

~33!

results from Eqs.~24!, ~27!, ~28!, and~31!; the kinetic energy
term

^Ekin&05
1

eF
E

0

`

de
e

11exp@b~e2m0!#
~34!

in Eq. ~32! is the expectation value of the kinetic energy p
electron for a noninteracting system.D(q) is identified as
precisely the term in thev3 sum-rule coefficient@17# that
embodies the exchange-correlation effects through the s
structure functionsS(uq2q8u) and S(q8). At long wave-
lengths,

D~q→0!5
5

8

q2V

m*
. ~35!

As stated above, the complete lack of static structure fu
tion data for the 2DCF in the weakly degenerate quant
domain makes it necessary to determineV by some other
means. One strategy is to replace Eq.~30! with the postu-
lated decomposition

V~n,T!5^Ec&~n,T!1^Ex&~n,T! ~36!

in terms of the more accessible correlation and excha
energies per particlêEc&(n,T) and^Ex&(n,T), respectively
@see Eqs.~78!–~81! below#. Such a decomposition is consis
tent with the observations~i! thatVcl5^Ec&(n,T) in the clas-
sical limit and~ii ! that the exchange contribution toV is the
Hartree-Fock~HF! exchange energy per particle^Ex&(n,0)
520.6e2/a in the T50 limit @17~c!#.

In the classical domain, the VAA expansion~32! is in
every respect identical to the exact high-frequency expan
of Rex(q,v→`) throughO(1/v4). With the decomposition
~36!, this is very nearly the case in the weakly degener
quantum domain—except for the discrepancy between
VAA(3 q2/m* )^Ekin&0 term ~which is devoid of correlation
effects! and its v3 sum-rule counterpart (3q2/m* )^Ekin&
~which is not! @17~c!#. There is no way to remedy this defe
of the VAA formalism.

IV. STAGE-2 REFORMULATION IN TERMS OF
QUADRATIC DENSITY RESPONSE FUNCTIONS

The stage-2 development consists in using the QFDT
replace the three-point structure functions in the express
~28! for K(q,v) and inKsc(q,v)5«(q,v)K(q,v) with the
more accessible quadratic density response functions.

Since the three-point functionS(q82q,v8;q,v9) is ex-
5-5
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pected to be nonsingular, thev850, v950, andv852v9
singularities in Eq.~10! are spurious, and the QFDT remain
unchanged if one stipulates that each denominator in
~10! is a double principal-value denominator. With this u
derstanding, injecting Eq.~10! into Eq. ~28! leads to expres-
sions that are amenable to Kramers-Kronig analysis. T
are

ReK~q,v!5
2

bN (
q8

S q•q8

qq8 D @Rex~q82q,0;q,0!

1I 1~q,q8,v!2I 2~q,q8,v!2I 3~q,q8,v!#,

~37a!

I 1~q,q8,v!52vE
2`

` dv8

2p E
2`

` dv9

2p

3Rex~q82q,v8;q,v9!

3P
1

v8
P

1

v9
P

1

v2v9
, ~37b!

I 2~q,q8,v!52vE
2`

` dv8

2p E
2`

` dv9

2p

3Rex~2q8,2v82v9;q82q,v8!

3P
1

v8
P

1

v81v9
P

1

v2v9
, ~37c!

I 3~q,q8,v!52vE
2`

` dv8

2p E
2`

` dv9

2p

3Rex~q,v9;2q8,2v82v9!

3P
1

v9
P

1

v81v9
P

1

v2v9
, ~37d!

Im K~q,v!5
2

bN (
q8

S q•q8

qq8 DReFvE
2`

` dv8

2p

3x~2q8,2v2v8;q82q,v8!P
1

v8
P

1

v1v8

2E
2`

` dv8

2p
x~q82q,v8;q,v!P

1

v8

1E
2`

` dv8

2p
x~q,v;2q8,2v2v8!P

1

v1v8G .
~38!

Addressing first the reduction of ReK(q,v), the evaluation
of I 1 is facilitated by the partial-fraction expansion
04612
q.

y

I 1~q,q8,v!5
1

2 E2`

` dv8

p E
2`

` dv9

p
Rex~q82q,v8;q,v9!

3FP
1

v8
P

1

v9
1P

1

v8
P

1

v2v9G . ~39!

The subsequent reduction of Eq.~39! to

I 1~q,q8,v!52 1
2 Rex~q2q8,0;2q,0!

1 1
2 Rex~q2q8,0;2q,v! ~40!

via Hilbert transform operations follows from the observ
tion that x(q82q,v8;q,v9) is a plus function of its fre-
quency arguments. The more involved evaluations ofI 2 and
I 3 similarly proceed from the partial-fraction expansions

I 2~q,q8,v!5
1

2 E2`

` dv8

p E
2`

` dv9

p

3Rex~2q8,2v82v9;q82q,v8!

3FP
1

v8
P

1

v81v9
2P

1

v1v8
P

1

v81v9

1P
1

v8
P

1

v2v9
2P

1

v1v8
P

1

v2v9G ,
~41!

I 3~q,q8,v!5
1

2 E2`

` dv8

p E
2`

` dv9

p

3Rex~q,v9;2q8,2v82v9!

3FP
1

v9
P

1

v81v9
1P

1

v2v9
P

1

v81v9G .
~42!

After some lengthy algebra entailing repeated Hilbert tra
form operations, Eq.~41! simplifies to

I 2~q,q8,v!5 1
2 Rex~q8,0;q2q8,0!2 1

2 Rex~q8,0;q2q8,v!

2vE
2`

` dv8

2p
Im x~q8,v8;q2q8,v2v8!

3P
1

v8
P

1

v2v8
. ~43!

Equation ~42!, as it stands, is not amenable to Krame
Kronig analysis unless one first invokes the Poinca´-
Bertrand theorem@15,20#. The steps in the reduction of th
first integral are
5-6
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1

2 E2`

` dv8

p E
2`

` dv9

p
Rex~q,v9;2q8,2v82v9!

3P
1

v9
P

1

v81v9

5
1

2 E2`

` dv9

p
P

1

v9
E

2`

` dv8

p
P

1

v81v9

3x~q,v9;2q8,2v82v9!2 1
2 Rex~q,0;2q8,0!

5 1
2 Rex~q,0;2q8,0!2 1

2 Rex~q,0;2q8,0!50; ~44!

the last line results from the double Hilbert transform ope
tion. The second integral in Eq.~42! similarly vanishes.
Thus,

I 3~q,q8,v!50. ~45!

The expression

ReK~q,v!5
1

bN (
q8

S q•q8

qq8 D
3FvE

2`

` dv8

p
Im x~q8,v8;q2q8,v2v8!

3P
1

v8
P

1

v2v8
1Rex~q8,v;q2q8,0!

1Rex~q8,0;q2q8,v!G ~46!

then results from Eqs.~37!, ~40!, ~43!, and ~45!, and the
triangle symmetry relation~12!. The conversion of the ex
pression~38! for Im K(q,v) into a form similar to Eq.~46! is
a less daunting task. Replacing the last two integrals in
~38! by their Hilbert transforms and using triangle symme
relations~12! and ~13!, one readily obtains

Im K~q,v!5
1

bN (
q8

S q•q8

qq8 D
3F2E

2`

` dv8

p
Rex~q8,v8;q2q8,v2v8!

3P
1

v8
P

1

v2v8
1Im x~q8,v;q2q8,0!

1Im x~q8,0;q2q8,v!G . ~47!

The compact VAA coupling correction
04612
-

q.

K~q,v!5
2

bN (
q8

S q•q8

qq8 D E
2`

`

dv8d2~v8!

3@x~q8,v8;q2q8,v2v8!

1x~q8,v2v8;q2q8,v8!# ~48!

and its screened counterpart

Ksc~q,v!5
2

bN (
q8

S q•q8

qq8 D E
2`

`

dv8d2~v8!

3F xsc~q8,v8;q2q8,v2v8!

e~q8,v8!e~q2q8,v2v8!

1
xsc~q8,v2v8;q2q8,v8!

e~q8,v2v8!e~q2q8,v8!G ~49!

follow from Eqs.~46!, ~47!, ~28!, and~8!. This completes the
stage-2 derivation.

Earlier we mentioned that the classical (\→0) limit of
VAA kinetic equation~21! is exact when the system is drive
by a static perturbation. This implies that in the\→0 limit
the VAA expression~27! @with ~28!# for x(q,v50) is iden-
tical to the first equation in the static BBGKY hierarchy link
ing the equilibrium pair and ternary correlation function
Then, by definition, VAA Eq.~29! @with ~49!# must rigor-
ously reproduce the classical (\→0) limit of the compress-
ibility rule xsc

exact(q→0,v50)52n(]P/]n)T
21 for all fluid-

phase values of the classical coupling parameterGcl
5be2/a. In the weakly degenerate quantum domain, ho
ever, the static VAA coupling correction

Ksc~q→0,0!5
2

bn (
q8

S q•q8

qq8 D xsc~q8,0;q2q8,0!

e~q8,0!e~q2q8,0!
,

~50!

when evaluated in the RPA limit, reproduces the domin
O(Gcl

2 ln Gcl
2) correlation energy part but not theO(GclAb«F)

exchange energy part@see Eqs.~80! and ~81! below# of the
compressibility rule@21#. This discrepancy has no bearin
whatsoever on the further evaluation ofKsc(q→0,v) in Sec.
V, where a prescription for including exchange in the dyna
ics is guided by the more pivotal third-frequency-mome
sum rule.

V. STAGE 3: DYNAMICAL SUPERPOSITION
APPROXIMATION

Equations~29! and~49! constitute the central relations o
the VAA. They determine the linear density response fu
tion in terms of quadratic ones. Closure can be achieved
postulating a decomposition of the latter in terms of t
former applicable to the long-wavelength~small-q! domain
of interest in the present paper. To accomplish this, we fi
analyze the semiclassical Vlasov function

x̄0~q8,v8;q2q8,v2v8!

and show that it has a simple decomposition in terms
linear x̄0 pair clusters in theq→0 limit. This relationship
will then be postulated to serve as the basis of
5-7
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self-consistency approximation for arbitrary coupling valu
The semiclassical Lindhard-like expression

x̄0~q8,v8;q9,v9!5
1

~2p\!2 E dk
1

v2~\/m* !~q•k!

3F S q8•
]

]kD q9•~]/]k! f 1
~0!~k!

v92~\/m* !~q9•k!

1S q9•
]

]kD q8•~]/]k! f 1
~0!~k!

v82~\/m* !~q8•k!
G
~51!

for the screened quadratic response function is derived f
Eqs.~7! and~14! with f 1

(2)(q,k,v) calculated from the paren
kinetic equation~19! in the uncorrelated approximation;q9
5q2q8, v95v2v8. The subsequent long-wavelength d
velopment of Eq.~51! in powers of a5u\(q•k)/(m* v)u
through ordera3 then results in the following relationshi
between the quadratic and linearx̄0’s:

x̄0~q8,v8;q9,v9!5
1

2m* (
j 51

3
j

v j 11 @Aj~q8,v8!

1Aj~q9,v9!#, ~52a!

A1~q8,v8!5~q•q9!x̄0~q8,v8!, ~52b!

A2~q8,v8!5
1

q82 ~q•q8!~q•q9!v8x̄0~q8,v8!, ~52c!

A3~q8,v8!5~q•q9!bS \

m* D 3 1

2p2 E dk~q•k!2~q8•k!

3
f 1

~0!~k!@12 f 1
~0!~k!#

v82~\/m* !~q8•k!
. ~52d!

Now rewrite the weak-coupling, long-wavelength value
Ksc,

K0~q→0,v!

5 lim
q→0

2

bN (
q8

S q•q8

qq8 D E
2`

`

dv8d2~v8!

3F x̄0~q8,v8;q9,v9!

ē0~q8,v8!ē0~q9,v9!
1

x̄0~q8,v9;q9,v8!

ē0~q8,v9!ē0~q9,v8!G ,
~53!

in the more convenient form

K0~q→0,v!5
1

bm* (
j 51

3
j

v j 11 l j~q→0,v!, ~54!
04612
.

m

-

f

l j~q,v!5
1

N (
q8

S q•q8

qq8 D E
2`

`

dv8d2~v8!

3FAj~q8,v8!1Aj~q9,v9!

ē0~q8,v8!ē0~q9,v9!

1
Aj~q8,v9!1Aj~q9,v8!

«̄0~q8,v9!«̄0~q9,v8! G ; ~55!

q95q2q8, v95v2v8;

ē0~q8,v8!512n~q8!x̄0~q8,v8!,

etc. Inserting Eqs.~52b!–~52d! into Eq. ~55! and exploiting
Kramers-Kronig relations, the subsequent evaluation of
l j ’s through orderq3 yields

l1~q→0,v!52
q3g

32pe2 ~5 lng19!

1
3

8
q3

1

N (
q8

1

q8
n~q8!H0~q8,v!, ~56!

l2~q→0,v!5
3q3gv

16pe2 2
1

8
vq3

1

N (
q8

1

q8
n~q8!H0~q8,v!,

~57!

l3~q→0,v!50 through O~q4!, ~58!

H0~q8,v!5E
2`

`

dv8d2~v8!
x̄0~q8,v8!x̄0~q8,v2v8!

ē0~q8,v8!ē0~q8,v2v8!
.

~59!

In deriving the first right-hand-side terms of Eqs.~56! and
~57!, one encounters the long-wavelength (q→0) RPA di-
electric functions @17~c!# ē0(q8,0)511(k/q8) and ē0(q
2q8,0)511(k/uq2q8u); k5(2m* e2/\2)@12exp(2beF)#
is the effective Fermi-Thomas wave number. In the wea
degenerate quantum domain,k>kD(12beF/2), wherekD
52pne2b is the classical Debye wave number. In Eqs.~56!
and~57!, we have introduced the modified plasma parame
g5k2/(2pn)52r s

2@12exp(2beF)#2'gcl(12beF)!1; its
value in the classical limit,gcl5kD

2 /(2pn), is customarily
used whenever a large number of particles populate the
bye circle, i.e., whenevergcl!1. We have imposed the cus
tomaryqmax5k/g'1/be2 inverse-impact-parameter cutoff t
avoid the familiar 2D logarithmic divergence also encou
tered in the calculation of the 2D correlation energy from t
Debye-Huckel structure function@22#. This divergence arises
because in two dimensions the RPA treatment breaks d
in the neighborhood of an electron where the induc
charges exceed the background density. Equations~54!, ~56!,
~57!, and ~58! combine to give the small-g VAA coupling
correction

2n~q!K0~q→0,v!5
q2

bm* v2 @R0
stat1R0

dyn~v!#, ~60!

R0
stat5 5

16 g ln g2 3
16 g, ~61!
5-8
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R0
dyn~v!52

1

8N (
q8<k/g

n2~q8!H0~q8,v!. ~62!

To make contact with thev3 sum rule, we observe that a
frequencies high compared with the plasmon frequency

H0~q8,v→`!'
nq82

m* v2

x̄0~q8,0!

ē0~q8,0!
. ~63!

The high-frequency expansion

xsc~q,v→`!5
nq2

m* v2 1
nq2

m* v4 F S \q2

2m* D 2

13q2 ^Ekin&0

m*

1
q2

bm*
R0

statG1OS 1

v6D ~64!

then follows from Eqs.~29! and ~60!–~63!. In the classical
limit, Eq. ~64! reproduces the exact sum-rule expans
@17~b!,~c!# for x(q,v→`) if and only if @q2/(bm* )#R0

stat is
identified as theq→0, gcl!1 value ofDcl(q), the term in
the classicalv3 sum-rule coefficient that portrays non-RP
particle correlations. This identification is easily verified
using Dcl(q→0)55q2^Ec&/(8m* ) with the correlation en-
ergy from Totsuji’s cluster-expansion formula@23#

b^Ec&~gcl!5
gcl

2
@ ln~2gcl!10.1544#

~65!
~gcl5kD

2 /~2pn!52pne4b2!1!

for the classical 2D electron gas. One readily obtains

D0
cl~q→0!5

5q2

16m*
gcl@ ln gcl10.8475#, ~66!

in agreement with@q2/(bm* )#R0
stat through ordergcl ln gcl

in the dominant term. But we have already noted that
VAA reproduces the potential energy part of thev3 sum rule
in the weakly degenerate quantum domain forarbitrary val-
ues of the coupling parameterG5e2/(a^Ekin&0). It is there-
fore quite natural to identifybq2/(bm* ) cRstat(G) as the Eq.
~35! D(q→0) for G arbitrary @see Eq.~67b! below#. The
zero subscript is accordingly dropped here and in the follo
ing to reflect this hypothesis. This latter identification,
fact, is subsumed in the following closure hypothesis
ferred to as the dynamical superposition approximation: E
~29! and ~49! are made self-consistent by postulating tha
decomposition of the quadraticx’s in terms of linear ones
which prevails in the (q/v)→0 limit for weak coupling, can
be relied upon as a paradigm for arbitrary coupling. Acco
ingly,

n~q!Ksc~q→0,v!52
q2

bm* v2 @Rstat1Rdyn~v!#,

~67a!

Rstat5 5
8 bV~n,T!5 5

8 b@^Ec&~n,T!1^Ex&~n,T!#,
~67b!
04612
n

e

-

-
s.
a

-

Rdyn~v!52
1

8N (
q8

n2~q8!H~q8,v!, ~67c!

H~q8,v!5E
2`

`

dv8d2~v8!
xsc~q8,v8!xsc~q8,v2v8!

e~q8,v8!e~q8,v2v8!
.

~67d!

This completes the stage-3 development of the VAA-D
theory.

Equations~29! and ~67! combine into a self-consisten
expression forxsc(q→0,v) with correlation energy data in
put from available Monte Carlo~MC! experiments and/or
hypernetted chain~HNC! calculations. The actual task o
solving Eq.~29! with Eq. ~67! at arbitrary frequencies andG
values is a formidable analytical/computational undertak
well beyond the scope of the present paper. At long wa
lengths, however, it turns out that the expression~67c! is
amenable to analysis in the neighborhood of the plasma
quencyv2D(q)5@2pne2q/(esm* )#1/2, making it possible to
establish a tractable formula for the real part of the plasm
frequencyv(q→0) for G values such that (beF)Gcl,1 @see
Sec. II#. The analysis of Sec. VI elaborates on this.

VI. PLASMON DISPERSION

The dispersion relation for the longitudinal plasma mo
is derived from the zeros of the dielectric response funct

e„q,v~q!…512n~q!xsc„q,v~q!…, ~68!

with xsc given by Eqs.~29! and ~67!.
At long wavelengths, we observe that (q2/v2) is at most

of O(q) smallness in the vicinity of the plasmon frequenc
With this in mind, the development of Eq.~29! with Eq. ~67!
in powers of (q2/v2) gives

e~q→0,v!512
v2D

2 ~q!

v2 S 11
3q2

m* v2 ^Ekin&0

1
q2

bm* v2 @Rstat1Rdyn~v!# D .

~69!

To further evaluateRdyn(v), we observe that for smallq,
H(q8,v) can be Taylor expanded aboutv50 as follows:

H„q8,v~q!…'H„q8,v2D~q!…

5ReH~q8,0!1 iv2D~q!F ]

]v
Im H~q8,v!G

v50

1¯5
1

2 Fxsc~q8,0!

e~q8,0! G2

1 iv2D~q!
1

2p

3PE
2`

` dv8

v8

]

]v8 F Im
xsc~q8,v8!

e~q8,v8! G2

. ~70!

whence
5-9
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ReRdyn
„v~q!…[ReRdyn

'2
1

16N (
q8<qmax

n2~q8!Fxsc~q8,0!

e~q8,0! G2

,

~71!

Im Rdyn
„v~q!…ucorr'2v2D~q!

1

16pN (
q8

n2~q8!

3PE
2`

` dv8

v8

]

]v8 F Im
xsc~q8,v8!

e~q8,v8! G2

.

~72!

The steps in the derivation of Eq.~70! are detailed in the
Appendix. Again, theqmax cutoff in Eq. ~71! is imposed to
avoid the ubiquitous 2D logarithmic divergence arising fro
the RPA-like structure of the quadratic response function
herent in the closure hypothesis.@To detect the divergence
go to the classical limit, replacexsc(q8,0)/«(q8,0) with
2bnS(q8) via the fluctuation-dissipation theorem, and th
observe that the latter tends to2bn as q8→`#. For G,1
one customarily choosesqmax5k/g as before, whereas fo
G.1 one choosesqmax51/a. Concentrating on the latter do
main, we observe thatxsc(q8,0) ande(q8,0) can be reason
ably well approximated by the compressibility formulas

xsc
exact~q8→0,v50!52n~]P/]n! T

21

and

eexact~q8→0,v50!511n~q8!n~]P/]n! T
21

over most of the summation interval 0<q8<1/a. Substitut-
ing these expressions into Eq.~71! and performing the sum
mation, one obtains

ReRdyn'2
Gcl

2

8@b~]P/]n!T#2 lnF11
b~]P/]n!T

2Gcl
G

1
Gcl

2

8b~]P/]n!T@b~]P/]n!T12Gcl#
. ~73!

The expression~73! is bounded for allG>1; this is true
even at theG value whereb(]P/]n)T50: Rdyn521/64.
The expression~72! for Im Rdyn

„v(q)… provides the VAA-
DSA correlation-induced damping of the plasmon mo
Evaluating Eq.~72! at arbitrary coupling would entail solv
ing Eq.~29! with Eq. ~67!, which, as we have already state
04612
-

.

is well beyond the scope of the present paper. Howe
Eq. ~72! can be readily evaluated in the\→0 limit for gcl
!1; using the Vlasov formula Imx0(q8,v8)5
2(bnv/q8)Apbm/2 exp@2bmv82/(2q82)# and approximat-
ing «(q8,v8) by its static RPA value, one obtains

Im Rdyn
„v~q!…ucorr'2

pAp

32
gclAq/kD. ~74!

We will return to Eq.~74! shortly when we discuss plasmo
damping.

For calculation of the plasmon frequency, Eqs.~68!, ~69!,
and~67b! combine to give the biquadratic dispersion relati

v42v2D
2 ~q!v22v2D

2 ~q!s2q250, ~75!

s253
^Ekin&0

m*
1

5

8

V

m*
1

1

bm*
Rdyn. ~76!

Addressing the dispersion part of the calculation, we so
Eq. ~75! for the real part to obtain

Rev~q!5
v2D~q!

&
@11A114sr

2q2/v2D
2 ~q!#1/2 ~77a!

'v2D~q!1
sr

2q2

2v2D~q!
, ~77b!

where

sr
25Res253~^Ekin&0 /m* !15V/~8m* !1~1/bm* ! ReRdyn.

Equation ~77b! follows from the small-q expansion of the
radical in Eq.~77a!. Equations~77!, ~76!, and~73! describe
the long-wavelength plasmon dispersion in weakly degen
ate (beF<0.2) 2D Coulomb fluids over a wide range ofG
values such that (beF)Gcl is of order unity at most. A given
pair of (G,beF) values determines thêEkin&0 , ^Exc&, and
inverse compressibility (]P/]n)T inputs via Eqs.~78!–~81!
and ~83! below. While Monte Carlo@24,25# simulations and
hypernetted chain @26# calculations have generate
correlation-energy data for the 2D electron liquid in the cla
sical @24,26# and zero-temperature quantum@25# domains,
little, if any, such data are available at arbitrary degenera
For (beF)max50.1– 0.2, however, fairly reliable formulas fo
the interaction energy can be constructed either from
purely classical MC formula of Totsuji@23# or from Lado’s
HNC formula@26#. This is accomplished simply by adding
temperature-dependent exchange contribution. The mod
formulas for the exchange-correlation energy are
bV~n,T!5H 21.12Gcl10.71Gcl
1/420.381b^Ex&~n,T! ~0.707,Gcl,50!,

21.0952Gcl10.98511b^Ex&~n,T! ~Gcl.30!,

~78!

~79!
5-10
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with the exchange energy given by the asymptotic form
@27#

^Ex&~n,T!50.632AbeF^Ex&~n,T50! ~80!

in terms of the Hartree-Fock exchange energy per particle@7#

^Ex&~n,T50!52
4&

3p

e2

a
. ~81!

The inverse isothermal compressibility input to Eq.~73! is
calculated from theapproximate2D equation of state for-
mula

P5n^Ekin&01 2
3 n^Ex&~n,T!1 1

2 n^Ec&~n,T! ~82!

that is exact in the classical limit@17~c!# and that best ac
commodates use of the fitted formulas~78! and ~79!. From
Eq. ~82!, it can be shown that

S ]P

]n D
T

5
eF

12exp~2beF!
1

]

]n
n~ 2

3 ^Ex&~n,T!1 1
2 ^Ec&~n,T!!

>
1

b
~11 1

2 beF!1
]

]n
n~ 2

3 ^Ex&~n,T!1 1
2 ^Ec&~n,T!!

~83!

valid for (beF)max50.1– 0.2 and arbitraryG. One cannot
overstate the centrality of thev3 sum rule in the VAA-DSA
description of plasma-mode dispersion: our calculations
veal thatuReRdyn

„v(q)…u!(5/8)buVu for all G values, sug-
gesting that the coupling correction to the long-wavelen
RPA plasma-mode dispersion is entirely controlled by
potential energy part of the third-frequency-moment su
rule coefficient.

Dispersion curves based on Eq.~77a! are displayed in
Figs. 1~a!, 1~b!, and 2 for the weakly degenerate and clas
cal 2DCFs. The exceedingly thin RPA linewidths shown
Figs. 3 and 4 confirm that the 2D plasma waves are virtu
unaffected by Landau damping at long wavelengths. As
pected, the effect of the static exchange-correlation hole
to depress the long-wavelength plasmon frequency below
RPA value, the deviation increasing with increasingG for
fixed beF . Here the correlational contribution plays th
dominant role. For example, atbeF50.2 andG55 the ex-
change comprises 16–18% of the deviation forqa ranging
from 0.1 to 0.5; atG510, its effect diminishes slightly to
14.9–17.4 % over the sameqa range.

VII. CONCLUSIONS AND DISCUSSION

In this paper, we have analyzed the dynamical respo
and long-wavelength plasmon dispersion in the stron
coupled 2DCF in the weakly degenerate quantum dom
Adopting the Ref.@15# methodology, we have developed
self-consistent approximation scheme@Eq. ~29! with Eq.
~67!# for calculation of the screened density response fu
tion xsc(q,v) at long wavelengths. The basic ingredients
the construction of the approximation scheme are the
kinetic equation in the BBGKY hierarchy@Eq. ~19!#, the
04612
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st

VAA hypothesis@Eq. ~20!#, the QFDT@Eqs. ~9! and ~10!#,
and the DSA closure hypothesis@Eq. ~67!#. The VAA-DSA
dynamicallocal field correction

G~q,v!5
Ksc~q,v!

x0~q,v!@12n~q!Ksc~q,v!#
, ~84!

with screened coupling correctionKsc(q,v) given by Eq.
~67!, provides the correspondence between Eq.~29! and the
conventional mean field theory formula

xsc~q,v!5
x0~q,v!

11n~q!G~q,v!x0~q,v!
. ~85!

The D(q) term in the high-frequency expansion~32! of
xVAA(q,v) is identified as precisely the term in the third

FIG. 1. ~a! Plasmon dispersion curves forbeF50.2 andG55.
The solid line, calculated from Eq.~77a!, takes account of the stati
exchange-correlation effect. The dash-dotted line portrays the
persion without the exchange and the dotted line is the RPA cu
~b! Plasmon dispersion curves forbeF50.2 andG510 with the
solid line calculated from Eq.~77a!. The dash-dotted line leaves ou
the exchange and the dotted line is the RPA curve.
5-11
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frequency-moment sum-rule coefficient@17~a!,~d!# that ac-
counts for exchange and correlation through the two-po
static structure functions@see Eq.~33!#; at long wavelengths
D(q→0) is proportional to the potential energy per partic
Given the complete lack ofS(q) data for the 2DCF in the
weakly degenerate quantum domain, we have postulated
the long-wavelength expression~35! for D(q→0) can be
replaced by the decomposition~36! as an alternative way o
determining the potential energy in terms of the excha
and correlation energies calculated from formulas~78!–~81!.

The VAA-DSA G(q,v), in contrast to the conventiona
@3,7,8,9# and quantum@12# STLS local field corrections
which do not satisfy the third-frequency-moment sum ru
~i! features thev3 sum-ruleD(q→0) coefficient as the cen

FIG. 2. Plasmon dispersion curves in the classical domain
G55, 10, and 40. The solid lines, calculated from Eq.~77a!, take
account of the static correlation effect.G55 labels the upper solid
line, G510 the middle line, andG540 the bottom line. The dash
dotted lines are the corresponding RPA curves with the samG
value ordering.

FIG. 3. RPA linewidths atbeF50.2 andG55, 10.
04612
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trally important element in the description of the couplin
correction to the long-wavelength 2D-plasmon dispers
and ~ii ! gives a prescription for going beyond the RPA d
namics of single particle-hole pair excitations~Landau
damping! by taking account of Coulomb correlation-induce
damping@see Eq.~86! below#.

A few remarks about plasma-mode damping in the cla
cal limit and at weak coupling (gcl!1), which could have
relevance to the strongly coupled 2DCF in the weakly d
generate quantum domain. From Eq.~74!, the correlational
damping rate is calculated to be theO(q2) coupling-
dependent expression

Im v~q!52
pAp

23/432
gcl

5/4v0S q

kD
D 2

v0[A2pne2/~ma!.

~86!

This result differs markedly from the damping rate predict
some time ago by Totsuji@23# and later confirmed by Lu and
Golden in an independent calculation@28#. Using a semiphe-
nomenological approach based on the Vlasov-Boltzm
equation, Totsuji’s calculation reveals the existence o
lower-order overallO(q) coupling-independent collisiona
damping which survives even in thegcl50 limit and which
is accompanied by an upward shift in the Bohm-Gross p
mon dispersion, viz.,

v~q!'v2D~q!F11~ 3
2 1B!

q

kD
2 iAApq/kDG , ~87!

where the collisional damping coefficientA5 3
16 , and where

the concomitant collision-induced dispersion coefficientB
521p/256. Using a systematic formal expansion~in gcl! of
the first two equations in the BBGKY hierarchy, Lu an
Golden @28# arrive at the same structure~87! in the gcl50
limit with A5 1

8 andB57p/128.@Satisfaction of thev3 sum
rule is still assured since

ecoll~q→0,v;gcl50!5e~q→0,v;gcl50!2e0~q→0,v!

r FIG. 4. RPA linewidths atG55, 10, and 40 in the classica
domain.
5-12



in
th
d
e

he

et
a
it

le

g-

ct

ns

en-

on
in
ard

Eq.
sts
the
the

nt
F/
ing.

sti-
er-
on

DYNAMICAL THEORY OF STRONGLY COUPLED TWO- . . . PHYSICAL REVIEW E 64 046125
5 i ~Ap/4!@v2D~q!/v#5~q/kD!1/2.]

By contrastA505B in the RPA (g50) limit of the present
VAA-DSA mean field theory. Indeed,A505B for all 2D
mean field theories in the classical and quantum doma
This irreconcilable disparity is a consequence of the fact
mean field theories do not take account of short-range
namic collisions. The survival of the collisional effect in th
g50 limit is related to the fact that, in two dimensions, t
mean particle-particle collision frequency@2pne2kDH /m#1/2

turns out to be entirely independent of the plasma param
This obtains even when calculated under the usual we
coupling assumption that a test particle interacts weakly w
a large population of field particles inside the Debye circ

Given the possibility of the interesting small 7p/128 up-
ward shift, we expect that the VAA-DSA description of lon
wavelength plasmon dispersion is most accurate forGmin
'5, beyond which short-range dynamic collisional effe
are overwhelmed by exchange-correlation effects.

The question arises as to whether the VAA might be
promising approach to the calculation of dynamical respo
04612
s.
at
y-

er.
k-
h
.

s

a
e

and plasmon dispersion in the 2DCF in the strongly deg
erate quantum domain. Kalman and Rommel@29# have com-
pleted the first two stages of the quantum VAA calculati
for the zero-temperature2DCF. Some progress was made
the stage-3 development in that they calculated the Lindh
quadratic density response function equivalent of our
~51!. Their far more involved expression, however, sugge
that the final step of establishing a quantum equivalent of
DSA closure scheme is a formidable task well beyond
scope of the present paper.
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APPENDIX

In this Appendix, we detail the steps in the evaluation of the first right-hand-side member of Eq.~70!. We begin by writing
Eq. ~67d! in the more convenient form

H~q8,v!5
1

p
PE

2`

` dv8

v8

xsc~q8,v2v8!

e~q8,v2v8!
Im

xsc~q8,v8!

e~q8,v8!
. ~A1!

Replacement of Im@xsc(q8,v8)/«(q8,v)# by its Hilbert transform~HT! accompanied by a partial fraction expansion~PFE! and
application of the Poincare´-Bertrand~PE! theorem gives

H~q8,v!5
1

p2 PPE
2`

` dv8

v8
E

2`

` dv9

v82v9

xsc~q8,v2v8!

e~q8,v2v8!
Re

xsc~q8,v9!

e~q8,v9!
~HT!

5
1

p2 PPE
2`

`

dv8E
2`

` dv9

v9~v82v9!

xsc~q8,v2v8!

e~q8,v2v8!
Re

xsc~q8,v9!

e~q8,v9!
~PFE!

52
1

p2 PPE
2`

`

dmE
2`

` dn

n~m1n2v!

xsc~q8,m!

e~q8,m!
Re

xsc~q8,n!

e~q8,n!

5
xsc~q8,v!xsc~q8,0!

e~q8,v!e~q8,0!
2

1

p2 PPE
2`

` dn

n E
2`

` dm

m1n2v

xsc~q8,m!

e~q8,m!
Re

xsc~q8,n!

e~q8,n!
~PB!

5
xsc~q8,v!xsc~q8,0!

e~q8,v!e~q8,0!
1

1

p2 PPE
2`

` dm

m E
2`

` dn

~v2m!2n

xsc~q8,n!

e~q8,n!
Re

xsc~q8,m!

e~q8,m!
; ~m↔n! interchange.

~A2!

Consequently,

H~q8,v!5
xsc~q8,v!xsc~q8,0!

e~q8,v!e~q8,0!
2

i

p
PE

2`

` dm

m

xsc~q8,v2m!

e~q8,v2m!
Re

xsc~q8,m!

e~q8,m!
~A3!

by application of the Hilbert transformation to Eq.~A2!. From Eqs.~A1! and ~A3!, it can then be shown that

2
i

p
PE

2`

` dm

v2m

xsc~q8,v2m!xsc* ~q8,m!

e~q8,v2m!e* ~q8,m!
5

xsc* ~q8,v!xsc~q8,0!

e* ~q8,v!e~q8,0!
. ~A4!
5-13
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Equation~A4! combined with

H~q8,0!5
1

p
PE

2`

` dm

m
Re

xsc~q8,m!

e~q8,m!
Im

xsc~q8,m!

e~q8,m!
~A5!

then gives

H~q8,0!5
1

2 Fxsc~q8,0!

e~q8,0! G2

. ~A6!
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