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We study the problem of dynamical response and plasma mode dispersion in strongly coupled two-
dimensional Coulomb fluid$2DCFg in the weakly degenerate quantum domain. Adapting the nonlinear
response function approach of Golden and Kalffimys. Rev. A19, 2112(1979] to the 2DCF, we construct
a self-consistent approximation scheme for the calculation of the density response functions and plasma mode
dispersion at long wavelengths. The basic ingredients in the constructi¢in e first kinetic equation in the
Bogoliubov-Born-Green-Kirkwood-Yvon hierarchyjij) the velocity-average-approximatidivAA ) hypoth-
esis, (iii) the quadratic fluctuation-dissipation theorem, divd the dynamical superposition approximation
(DSA) closure hypothesis. The reliability of the VAA-DSA theory can be assessed by observing that the
principal coupling correction to the 2D temperature-dependent Lindhard function is identified as being pre-
cisely the part of the third-frequency-moment sum-rule coefficient proportional to the potential energy.
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[. INTRODUCTION the plasma mode excitations have been derii)ely follow-
ing a microscopic hydrodynamic approdd, (ii) by adapt-
This paper addresses the problem of dynamical respongeg the conventional Singwi-Tosi-Land-Sjoland&TLS) [2]
and plasma mode dispersion in strongly coupled two-mean field theory approach to the 2D one-component plasma
dimensional Coulomb fluids in the weakly degenerate quank3], (iii) by following an approach that combines the qua-
tum domain. External magnetic fields are assumed to be eflratic fluctuation-dissipation theorex@FDT) with linear-
tirely absent. ized moment equations for the plasma density, fluid velocity,
The two-dimensional Coulomb fluieDCH is an ideal- Pressure tensor, and heat-flow teng®l; and(iv) by adapt-
ized model one-component plasit@CP in which charged N9 the quasilocalized charge approximati@LCA) [5] to
particle motions in a uniform rigid neutralizing background the 2D QCP[6]' In the zero-temperature guantum domain,
are restricted to a two-dimension@D) plane of zero thick- the depsﬂy response function has been calculatgd and plas-
ness. The charges interact via the) =e?/(es) Coulomb ~ 11on dispersion curves have been genergigdy using the

tential r being th tion dist in the ol d STLS approach—or a sum-rule version of it—with the 2D
potential,r being the separation distance In the piane and /54, density response function replaced by the Lindhard
the dielectric constant of the substrate. In the classigal (

! ) > i function[7-9], (vi) via a 2D quantum kinetic equation treat-
—0) domain, the coupling parametB;=Be“/(e@) is the  ment ysing a Mori memory function formalism that takes
customary measure of the strength of the particle correlayccount of the dynamics of the exchange-correlation hole
tions; 8~ '=kgT is the 2D thermal energy aral=1/\/mn is  surrounding each electrdi0], and (vii) more recently, by
the interparticle distance. In the zero-temperature quanturpplication of aquantumversion[11] of the STLS approach
domain the customary coupling parameter is-a/aq; a5  to the 2D electron fluid12].
=h2e,/(m*e?) is the effective Bohr radius withm* The calculation of the dynamical response and plasma
the effective mass. For arbitrary degeneracy, mode dispersion in the strongly coupled 2DCF at degeneracy
=e?/(esa(Eyin)o) is the appropriate measure of the coupling levels somewhere between the classical and zero-temperature
strength{E,i.)o being the average kinetic energy for a 2DCF limits, is, to the best of our knowledge, a problem that has
of noninteracting particled; —I'y asf#—0 andl’—2r, as  received very little attention. The present paper begins to
T—0. The 2DCF is said to be strongly coupled whEn explore this problem by considering the above calculation in
>1. the weakly degenerate quantum domgia-=Bmnh?/m*
Over the past three decades a variety of theoretical ap=<(B€eg)max, Where we take Ber)ma~0.1-0.2. Examples
proaches have been put forward for the calculation of thef the strongly coupled 2DCF in the weakly degenerate
dynamical response and plasma mode behavior in thguantum domain are(i) the 2D hole layer in a
strongly coupled 2DCF. In the classical domain, formulas forGaAs/ALGa, _,As heterostructure(n=2.5x101%cm™2, T
the density response function and dispersion and damping 6£5.78 K, m* =0.6m,, Beg=0.2,I'=6.17) [13] and(ii) the
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2D electron layer trapped on the free surface of liquid heliumWe next linearize and convert its right-hand-side nonequilib-
(n=10°cm 2, T=2.77K, Be-=0.01,I'=33.7) [14]. rium two-point density correlation function into equilibrium
In calculating the dynamical response, we will supposethree-point structure functions via routine statistical me-
that a classical kinetic theory based response function aghanical linear response calculations. The resulting(29).
proach, proposed some time ago by Golden and Kalmaffr the screened linear response function features these latter
(GK) [15] for the 3D OCP, can be adapted to the weakly@s thel'-dependent t_:orrection to the L_in(_jhard function. In
degenerate 2DCF of the present paper. This adaptation refl® stage-2 calculatiofSec. V), we eliminate the three-
sonably well approximates the dynamics provided jpag ~ POINt structure functions in favor of the more accessible full
is sufficiently small and exchange effects are properly takeNd screened quadratic response functions by application of
into account. In Sec. Il we propose a strategy suggested bijie¢ QFDT. Self-consistency is then guaranteed at long wave-
the third-frequency-moment sum rule for incorporating ex-1€ngths in the stage-3 calculation of Sec. V by approximating
change in the modified GK approach. the quadratic density response functions in terms of linear
The principal building blocks for construction of the Ones. The first principal result of this paper, the non-RPA
modified approach aré) the first kinetic equation of the COUPIing correction(67), is expressed in terms of the
Bogoliubov-Born-Green-Kirkwood-YvonBBGKY) hierar- ~ €xchange-correlation energy. The second principal result, a
chy linking the one- and two-particle distribution functions Simple analytical formula for the long-wavelength dispersion
(labeledf, andf,) and (i) the classical 2D QFDT linking ©Of the plasma mode, is derived in Sec. VI from EG9) and
quadratic response and three-point structure functiags ~ (67). Conclusions and discussion follow in Sec. VII.
The central hypothesis of the theory, the velocity-average
approximationVAA ) [see Eq(20) below], supposes that the Il. RESPONSE AND STRUCTURE FUNCTIONS
non-RPA (random-phase approximatippart of f, can be

. In this section we introduce quantities and relations cen-
replaced by a suitably chosen momentum average.

tral to the development of the VAA approach, namély,

In the GK theory, a chain of density-response-functionl. : oo
. inear and quadratic response functiofis} two- and three-
equations can be generated solely from flist BBGKY . . o )
kinetic equation by combining it with the hierarchy of ([j)omt structure functions(iii) the QFDT linking the qua

. T . R ratic response and three-point structure functions.

fluctuation-dissipation theorems. This combination is made A

possible by the VAA, which converts the momentum- L€t Ui t)=U(r,t)+Up(r,t) be the total(screenep
dependent, [in kinetic equation19)] into a more tractable potential energy response to a weak external potedralt)
momentum-independent  density-density nonequilibriumacting at the in-planez=0) pointr within the 2D Coulomb
two-point function[see Eq.(21)]. The first equation in the fluid; U, is the inducedpolarization potential energy re-
VAA chain links linear and quadratic response functions, thesponse to external potential energy(r,t)=ed(r,t); e=
second links quadratic and cubic response functions, and se|e| for an electron fluid ané= +|e| for a hole fluid. The
on. Depending upon the degree of accuracy desired, one caistomary density response function$qg,w) (full) and

truncate the chain at any level. If, for example, all equations, (q,w) (screenefl are defined by the linear constitutive
after the first one are dropped, then closure is effected byelations

approximating the quadratic density response function in

terms of linear ones. This is the closure to be followed in the (nq)(l)(w)=)((q,w)0(q,w) (1)
present paper. This procedure, first developed by GK for the
3D OCP[15] and referred to as the dynamical superposition :XS(,(q!w)U%t)(q!w); 2)

approximation(DSA) is presented in Sec. V. The outcome is
a self-consistent expressipRqgs. (29) and(67)] for the dy-  the superscriptl) denotes a first-order response to the exter-
namical density response function featuringymamicallo-  na| driving potentiakb; ng==; exp(-iq-x;) is the 2D Fou-
cal field correction that exactly reproduces the potential enrier transform of the microscopic densityr) == 8(r — x;)
ergy parfEgs.(33) and(35)] of the third-frequency-moment and the angular brackets denote the ensemble average; the
sum-rule coefficien{17] in the high-frequency limit. This jy_plane wave vectog=(qy,dy). With the aid ofxs{(q,®)
compliance with the sum rule makes it possible to incorpoung y(q) = 2we?/(e.q) [the Fourier transform of the 2D po-
rate exchange in the classical VAA-DSA formalism in & natu-tential e?/( ,r)] the dielectric response function is then
ral way, since the combined exchange-correlation effect re-
sides in the potential energy through the static structure €(q,0)=1—v(q) xs{q,®). 3
function[see Eq.(30)].

The plan of the paper is as follows. In Sec. Il we intro- The x- x5 relationship
duce the dielectric and full and screened linear and quadratic

density response functions via constitutive relations. Three- ~ Xsd Qo) 4
point static and dynamical structure functions are next intro- x(g,0)= e(q,w) @
duced and related to the quadratic response functions via the

QFDT. The development of the approximation scheme ignd the well-known expression

then carried out in three stages in Secs. lll, IV, and V. In the

stage-1 calculation, we establish the fundamental VAA- 1 =1+ () x(0 ) (5)
BBGKY kinetic equation for the weakly degenerate 2DCF. €(q,w) x(,
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for the inverse dielectric response function readily follow

from Egs.(1)—(3).

We next define full and screened quadratic density re-

sponse functions via the constitutive relations
1 » dw'
(2) —— . N P N
(ng) () QqE 5 x@0 =g w0’

xU(q",0)0(g—q",0—w'), (6)

(ng) @ ()= xsd 9, 0) U510, @)

12 = do’ AN ’ ’
ta 2 e CC TR s W)

XU, 0 UH(a-0q 0—'); 7
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x(d—q',0;—q,w)=x(q",»;9—q",0), (12

x(—d,@;9",.00=x(q",0,0-q",0) (13

are a consequence of the quadratic fluctuation-dissipation
theorem(10) and the Kramers-Kronig relations that the four
quadraticy’s satisfy.

The classical quadratic fluctuation-dissipation relations
(9) and(10) are central to the development of the theory and
will be implemented in the stage-2 calculation of Sec. IV.
The O(BAhw/2) quantum correctiorf18] to the classical
QFDT has been dropped in order to keep the mathematics
tractable and to make possible the pivotal development of
Sec. IV. This approximation would appear to be at the cost of
some accuracy. However, at the weak degeneracies
(Ber|max=0.1-0.2) and low frequencieghe 2D plasma
frequency of interest in this paper, the cost can be kept to a

() is the large but bounded area of the 2D system. The quaninimum by confining our analysis to the long-wavelength

dratic counterpart of Eq4),
x(q',0";0-q ,w—w')

Xsdd'0';0-q",0o—o0')

= (0@ o) elq— 0o’ ®

follows from Egs.(6), (7), and(3), the constitutive relation
U@,0)=0(q,w)/e(q,w), and the 2D second-ordéimn

U) Poisson equatiot) 2)(d, ®) = () (ng) P (w).
The quadratic fluctuation-dissipation relatidis]

S(q'—q,t;=0;q,t,=0)
_JOC dw, J’w dw” ! ! "
“)em | A Taenaeh

2
=—>sRex(q'—q,0'=0,9,0"=0), 9)

ng
S(9'—q,0";q,0")

(1), w!l

— 4 R 1 ’ Pie 1
Y ——x(@'—q,0';q0")

—mx(—q —o'-0"9 —q,0")

1
—mx(q,w,—q,—w —o") (10)

connect the quadratigs to the three-point structure function

S(Q"—a,t1;0.t2)
1 (0).
= (g (0)dng_q (—t1)on_o( 1))@ (D

the on’s are microscopic fluctuating densitigg.g., on,

=ny—Nd,) and the(---)(®) brackets denote ensemble aver-
aging over the equilibrium system. The useful triangle sym-

metry relations

domain @a<1). In any case, the approximation does not
affect the essential qualitative feature of the 2D-plasma mode
dispersion, namely, that exchange-correlation effects act to
depress the mode frequency below its RPA value. This is to
some extent borne out by the favorable quantitative compari-
son for ga values up to 0.5 between our Sec. VI plasmon
frequency calculation aBe=0.2 andl’=10 and the Ref.
[10] quantum kinetic equation calculation at zero tempera-
ture and the equivalent coupling~1'/2=5.

Ill. STAGE-1 CALCULATION: VAA LINEAR RESPONSE

In this section we formulate the semiclassical VAA kinetic
equation and from it we establish a relationship between
x(d,w) and the three-point structure function. We then show
that this relation very nearly satisfies the third-frequency-
moment sum rule for arbitrary values of the coupling param-
eter.

Let fq(r,k,t) and fo(r,k;r’,k’;t) be one- and two-
particle distribution functionsy=(x,y), r'=(x’,y’) and
hik=(fiky,fiky), ik’ = (fik; ,hk]) are in-plane £=0) posi-
tion and momentum coordinates. The distribution functions
are normalized taN and N(N—1) consistent with the mo-
ments

1
2_772J dk fq(r,k,t)=(n(r))(t), (14
1
mf dkf dk’fo(r,k;r’,k";t)
=(n(r)n(r"))(t) = a(r—r")(n(r))t); (15

n(r) andn(r’) in Eq. (15) are equal-time microscopic den-
sities and the notatiofr--)(t) refers to the time evolution
carried by the Liouville distribution function.

The unperturbed state of the 2DCF is characterized by the
equilibrium distributions

(k)= (16)

1
1+exp{Ble(k)— mol}t’
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B kr k) =f2(0f Y (kDI +h(r=r'DT 17) L9 Talrk
Lf(r,k,t)= 7 7Kk (n(r O fdr (n(r)n(r"))(t)

e(k)=#%k?/(2m*);  the relation Buo=puo/(ksT) 2

=In[exp(Be:)—1], derived from Eqs(14) and(16), connects xi e 21)
the chemical potentigk, for the noninteracting 2DCF to the ar [r—r'l”

2D Fermi energyer=mnA2/m*; n=N/Q is the density of

the unperturbed system; and In the classical limit, Eq(21) is known to be exact when the

system is driven by a static perturbation. This follows from
1 ] the fact that the perturbed distribution function in the pres-
h([r—r"|)= NE [S(a)—1lexdig-(r—r")] (18  ence of a static external perturbation is still a canonical dis-
a tribution in terms of the perturbed Hamiltonian, and that it
factorizes into momentum- and coordinate-dependent contri-
butions[19].

The routine calculation of the first-order average density
response consists in linearizing E&1), taking its Fourier
transform, solving forf{*)(q,k; ), and then taking the den-
sity moment per Eq(14). One obtains

A 1 -q’
wqm+wmﬁi(ii)

is the equilibrium pair correlation function defined in terms
of the static two-point structure functid®(q)=S(q,t=0).

The introduction of the weak potential energy perturba-
tion U(r,t) into the equilibrium system brings about the in-
cremental responses&fl(r,k,t)zfl(r,k,t)—f(lo)(k) and
Sto(r kir’ k) =fo(r ki’ k' t) = f(r kir k'), ofy
=fM+£@+... and 5f,= f(1)+f(2) We wish to calcu- o _
late the average first- order den5|ty respo(m@)(l)(t) from (N (@)= x0(d, @)
the first BBGKY kinetic equation

SR N LS (G0} D S X(Ng: Ng-qr)M(w) (22)
Liy(rkO=|—+ == = 7 k| a(hkD
19 1 The semiclassical Vlasov screened response function
== dr’f dk’ fo(r,k;r’,k’";t
f ok 2’772J' 2( ) o 1 (q&/&k)f(l())(k)
PR Xo(q,w)——mf o (M )q-K (23
calculated from Eqg. (190 in the fy(r,k;r’',k’;t)

=f.(rk,t)f1(r',k’,t) uncorrelated approximation, in fact,

Paralleling the Ref.15] procedure, we first convert the right- is the long-wavelength limit of the Lindhard function

hand side of Eq.(19) into a more tractable momentum-

independent nonequilibrium two-point correlation function. ) _ Okt
This is accomplished by supposing tHatis well described (q,w)= 12 fi k—(gf2)— i (k (q/2)).
: - i Xol @@= 50 —(AIm*)q-k
by its momentum average in the restricted sense where only k w—(AIM*)q-
one of its momentum arguments is averaged out, viz., (24)
1f,(rkt) 1 o o The nonequilibrium two-point function
fz(r,k;r’,k’;t)=§;'tﬁf dk f,o(r,k;r' k’;t) (Ng' Ng—q)P(w), in turn, can be expressed in terms of
(n(N)®) 27 equilibrium three-point functions through a straightforward
1f,(r' k1) 1 statistical mechanical linear response calculation. One ob-
tains

T2 () 272
(Ng' Ng-q) (@) =N(8q-q + 85 )(Ng) V(@

xf dk’ fo(r,k;r' k';t). (20) A
—BnE(aq,q",w)U(q,w), (25

The VAA ansatz(20) is exact when the system is in thermo-

dynamic equilibriuni.e., equilibrium distribution$16) and 2(Q.q',0)=S(q"~q,t=0;9,t=0)

(17) rigorously satisfy Eq(20)]. The resulting momentum- iw [ %
space double integral + 7| dw' f, do” §;(w—w")
(r k t) 1 f f Xs(qr_q w/.q (1)") (26)
dk | dk’ fo(rk;r' k't 1M
(Y1) (2722 AT )

where 6. (X) = (1/2)5(x) = (i/27) P(1/x); the P symbol de-
which replaces (1/22)fdk’ f,(r,k;r’,k’;t) in Eq. (19), notes the Cauchy principal value. The VAAIl density re-
can now be expressed in terms of the nonequilibrium twosponse function expression
point function(n(r)n(r’))(t) via Eq.(15). The VAA kinetic .
equation accordingly takes the form x(0,0)= x50, 0)[1-v(q)K(q,o)] (27
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then results from Eq922), (25), and (1) with xo(q, ) re- _ no? no? 72 \2
placed byxo(d, ); x50, @) = xo(d, @)/ €o(0, @) is the re-  Rex(qw—o)=1lim 1 —5 + 7 (Zm*)
sponse in the RPAgy(g,w)=1—v(q)xo(q,w) being the @
Lindhard dielectric function. In the classical VAA, the key 3G%(Ey)
particle-particle correlation effects beyond the RPA reside in + w+wgD(q)+ D(q)H'
the coupling correction m
(32)
B (ad\ . 1 (9-9")% , :
K(q,w)=5§ (—qq, )~(q,q ) (29 D(q)= mm% ¢ )I[S(la—a’')—Ss(a")],
(33
with E(q,q’,w) given by Eq.(26). The equally compact results from Eqs(24), (27), (28), and(31); the kinetic energy
VAA expression for thescreeneddensity response, term
Exn)o= ! fmd < 34
Xsd@,@)=xo(0,@)[ 1~ W(AKdd,)], (29 (Eumo=g- | detigraeag @4

readily follows from Egs.(27) and (4) and introduction of in Eq.(32) is the expectation value of the kinetic energy per
the screened coupling correctiéiy(q,w) via the definition ~ electron for a noninteracting syste(q) is identified as
K(g,w)=Ks{0,w)/e(q,0) paralleling Eq.(4). In adapting Precisely the term in the® sum-rule coefficien{17] that

the classical VAA formalism to the weakly degenerate quane€mbodies the exchange-correlation effects through the static
tum domain, we are, in effect, supposing that thestructure functionsS(|q—q’'[) and S(q’). At long wave-
temperature-dependent exchange also resides in the thrdengths,

point structure functions that comprise thg. and K cou- 5 o2
pling corrections. This completes the stage-1 derivation. D(g—0)= 5 q_* (35)
m

The VAA screened coupling correction, in its final long-
wavelength form(67) below, is expressed in terms of the
static two-point structure functioB(q)=S(q,t=0) via the
potential energy per particle

As stated above, the complete lack of static structure func-
tion data for the 2DCF in the weakly degenerate quantum
domain makes it necessary to determwvidoy some other
means. One strategy is to replace E80) with the postu-
1 lated decomposition
V=5g2 v(a)[Sa)-1]. (30)
o V(n,T)=(Ec)(n,T)+(Ex)(n,T) (36)

in terms of the more accessible correlation and exchange

Unfortunately, static structure function and equilibrium pair . . :
correlation function data for the 2DCF in the weakly degen_gnergms per particléE,)(n, T) and(E,)(n,T), respectively

erate quantum domain are unavailable so that the potenti pee Eqs(78)~(81) below]. Such a decomposition is consis-
energy input to Eq(67) has to be determined by some other ent with the observatior) thatVe=(Ec)(n,T) in the clas-

. . . ..sical limit and(ii) that the exchange contribution Yois the
means. One strategy is proposed below in connection with .
the third-frequency-moment sum-rdl&7] analysis. Hartree-Fock(HF) exchange energy per partio{&,)(n.0)

. 2 P
At high frequencies, the VAA expression fg(q,») very =—0.6e%/a in the T=0 limit [17(c)].

nearly reproduces the third-frequency-moment sum-rule co- In the cIas$|caI _domaln, the VAA expansid@?) is in :
efficient. To demonstrate this, we need to evalud, o) in every respect identical to the exact high-frequency expansion

L : of Rex(q, w— ) throughO(1/w*). With the decomposition
the o= limit. Following the procedure of Ref.15], one (36), this is very nearly the case in the weakly degenerate

obtains quantum domain—except for the discrepancy between the
VAA(3 g%/m*)(En)o term (which is devoid of correlation
ReZ(q,q’,w— %) effecty and its w® sum-rule counterpart @/m*)(Epn)
1 ) (which is noj [17(c)]. There is no way to remedy this defect
— i g ' of the VAA formalism.
_QI)ILTLF[ W—FW S(q 1 d—q "t ) vevo
IV. STAGE-2 REFORMULATION IN TERMS OF
. 1 , , QUADRATIC DENSITY RESPONSE FUNCTIONS
=~ lim o zl(aa )S(la—a’])

The stage-2 development consists in using the QFDT to
+a-(d—a’ / 1 replace the three-point structure functions in the expression
a-(@=a")S(a")], B 28 for K(q.) and K (o) = £(q, w)K(q.) with the
more accessible quadratic density response functions.
whence the high-frequency expression Since the three-point functio8(q’' —q,0";q,®") is ex-
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pected to be nonsingular, the’ =0, ©"=0, andew’'=— "

singularities in Eq(10) are spurious, and the QFDT remains

PHYSICAL REVIEW B4 046125

unchanged if one stipulates that each denominator in Eq.

(10) is a double principal-value denominator. With this un-
derstanding, injecting Eq10) into Eq. (28) leads to expres-
sions that are amenable to Kramers-Kronig analysis. They

are
q q
ReK(q,0)= 25 BN [Rex(a’—q,0,9,0
+|l(q1q !w)_|2(q!q,vw)_|3(qvqllw)];
(379
, *» do' (* do”
l1(q,q ,w)=2wf_m—277 e
XRex(q'—q,0';q,0")
1 1
XP—P—P—-7, (37b)
, © dw' (* do”
l2(a.q ,w)=2wf w 2T ) _w 2
XRex(—q',—o'—0";,q'—q,0")
1 1
XP_/P 7 //P "o (37(:)
[0} +w w
, » dw' (* dw”
a0 -20 | 5 [0S0
XRe)((q,w";—q',—w'—w")
1 1
XP—P———FP—7, (379
[0} w +w w—w
2 » dw’
T
q — o0
! ! i ! 1
Xx(—q',—o—0";q —q,0 )P?Pw—f—w'

Jw do’ ) . b 1
- 7wﬁX(q Qo 1q1w) U

+f°° do’ _ ) NP 1
,m_wX(q""' qg,—w—w') panpt

(39)

Addressing first the reduction of Réq, ), the evaluation
of I, is facilitated by the partial-fraction expansion

| ) _IJ‘” do’ OOdw"R
(0.9 0)=5 | —— | ——Rex(qd'—q0'q,0")
1 1 1 1
X P—,P—"—FP—,P ,,] (39)
w w w w—w
The subsequent reduction of E§9) to
11(9,q",0) =~ 3Rex(q—q’,0;—q,0)
+3Rex(q—q',0;—q,) (40)

via Hilbert transform operations follows from the observa-
tion that x(q'—q,0";q,0") is a plus function of its fre-
quency arguments. The more involved evaluationk,aind
I3 similarly proceed from the partial-fraction expansions

, 1 (> do'
12(a,9 ,w)=§J7 —

o T

o) dw//

— T

XRex(—q',—o'—0";q —q,0")

| p 1 P 1 1 1
o o+ wotow o+
1 1 1 1
+P_/P " 7 7k
w Ow— wt+w w—w
(41
da) » dw”
ado=; [ [
XRex(q,0";—q",— 0’ —w")
1 1 1 1
P_NP 7 //+P //P 7 ”
w tw w—w w tw
(42

After some lengthy algebra entailing repeated Hilbert trans-
form operations, Eq41) simplifies to

15(0,9",@)=3 Rex(q’,0;q—q’',00— 3 Rex(q',0;0—q’, »)

* do’
_“’f S mx(@',0"0-0" 0 - o)

1 1
XP—P 7
w w

—w

(43

Equation (42), as it stands, is not amenable to Kramers-
Kronig analysis unless one first invokes the Poincare
Bertrand theorenfi15,20. The steps in the reduction of the
first integral are
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1J’°° do’ (= dw"R , , " K j do's.
5| T | Rex(@e’i—al me'— ) (0, w)= 'S ()
1 X "ow'ig-q ,0— o’
wplp L [x(q q-q )
W et +x(q' 0—0';9-q",0")] (49)
:EJ"” do” 1 (= do’ b 1 and its screened counterpart
2)_w m o) T 0 H”
n ’ ’ " 1 ! 2 q q
Xx(q,0";—q",— o' - ")~ 3 Rex(q,0;—q",0) Ksda, w)_ﬁN qq’ dw 5-(o")

=3Rex(q,0,—q’,00— 3 Rex(q,0;,—q',00=0; (44 ' W' ' '
sRex(q q',00—3 Rex(q q’,0) (44) Xsc(q y0';0—-q9 ,0— ')

€(q 0" )e(q—q",0— ")

the last line results from the double Hilbert transform opera-

tion. The second integral in Eq42) similarly vanishes. Xsdd o—o0';0-q",0") 49
Thus, €(q,0o—o')e(q—q",0")
follow from Eqs.(46), (47), (28), and(8). This completes the
15(9,9",w)=0. (45  stage-2 derivation.

Earlier we mentioned that the classicdl-¢0) limit of

_ VAA kinetic equation(21) is exact when the system is driven
The expression by a static perturbation. This implies that in the-0 limit
the VAA expression(27) [with (28)] for x(q,»=0) is iden-

tical to the first equation in the static BBGKY hierarchy link-

1 q-q’ ing the equilibrium pair and ternary correlation functions.
ReK(q,w)=—— —

BN < Then, by definition, VAA Eq.(29) [with (49)] must rigor-
q ously reproduce the classical{0) limit of the compress-
= do’ o, , , ibility rule x&2{q—0,0=0)=—n(aP/an);* for all fluid-
x "’JlmT"nX(q 0'0-q0- ) phase values of the classical coupling paramefgr
=Be?/a. In the weakly degenerate quantum domain, how-
1 1 ever, the static VAA coupling correction
X P? P P +Rex(q’,»;9—q’,0)

g-9"\ xsdd',0;a—q’,0)
Ksdq—00)= ﬁn ( )e(q',me(q—q',or
(46) (50)

when evaluated in the RPA limit, reproduces the dominant

2 2 ; [
then results from Egs(37), (40), (43), and (45), and the O(T'; InI'y) correlation energy part but not ti(I' VBe )
triangle symmetry relatiorg12). The conversion of the ex- exchange_s?ergyIpaz[rieeTEqng) and (81) Eelovv] o{)the'
pression38) for Im K(q, w) into a form similar to Eq(46) is C%rgggs\%r'gz trhueef[urtaler el\?alulesxﬁz)enrlgt(cya 8‘5 ;l?n ;:gmg
a less daunting task. Replacing the last two integrals in Ecb q @

(38) by their Hilbert transforms and using triangle symmetry . where a prescription for including exchange in the dynam-
relations(12) and (13), one readily obtains ics is guided by the more pivotal third-frequency-moment

+Rex(q',0,0—-q",»)

sum rule.
1 V. STAGE 3: DYNAMICAL SUPERPOSITION
(@)= o ( ) APPROXIMATION
a' Equations(29) and(49) constitute the central relations of
© deo’ the VAA. They determine the linear density response func-
X —f TReX(q’,w';q—q’,w—w’) tion in terms of quadratic ones. Closure can be achieved by
o postulating a decomposition of the latter in terms of the
1 1 former applicable to the long-wavelengtbmall-q) domain
XP—P——+Imx(q',0;,9—q",0) of interest in the present paper. To accomplish this, we first
©w ere analyze the semiclassical Vlasov function
+Im x(q'.0,9—0" @) |- (47 Xo(d',0"0=0" 0= 0")
and show that it has a simple decomposition in terms of
linear xq pair clusters in thegq—0 limit. This relationship
The compact VAA coupling correction will then be postulated to serve as the basis of the
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self-consistency approximation for arbitrary coupling values. 1 q-q'\ (=
The semiclassical Lindhard-like expression \i(Q,0)= NZ (W)j do'é (')
q! — o0

Aj(q,,w/)'f'Aj(q”,wH)

€ol@ 0 Ve A", 0")

I ’ ey MY — 1
Xo(q" 0" q", @ )_(2wﬁ)2fdkw—(ﬁ/m*>(q'k)

[ERRE e AL A ]
ok | "= (hIm*)(q"-k) eo(q",@")eo(q",@") |’

, a) q'-(a/ak)fg(’)(k)} q'=9-0, o"=w-o’;
A o= €ol@,0")=1-1(a)xo(a' "),

(52) etc. Inserting Eqs(52b)—(52d) into Eq. (55 and exploiting

_ L . Kramers-Kronig relations, the subsequent evaluation of the
for the screened quadratic response function is derived frorrAy,S through orderg® yields
i

Egs.(7) and(14) with f{?(q,k, ) calculated from the parent

kinetic equation(19) in the uncorrelated approximatioq; a3y
=g—q’, o"=w—w'. The subsequent long-wavelength de- M(Q—=0w) == 35— (5Iny+9)
velopment of Eq.(51) in powers of a=|7%(q-k)/(m* )|
through ordera® then results in the following relationship 3 .1 1 ) )
between the quadratic and linégg’s: tgd ﬁ% q 1(Q")Ho(0", @), (56)
3 . 3
— ’ ’ r " 1 J ’ ’ — 3q Yo 1 3 1 1 ’ ’
Xo(@,0"q", 0")= 5 J_Zl SirilA(ah ) A(q—0w)= g~ g@q N% JV(Q JHo(q'", @),
" n (57)
+A(9", 0" ], (523
A3(q—0,0)=0 through O(g%), (58)
A1(9",0")=(9-9") xo(q" @), (52b)

Xxo(d", 0" ) xo(q",0—w")
(9,0 )e(q ,w—w')’
(59

Ho(q',w)= f:odw’ﬁ,(w’)

1

Az(q’,w’)=p(q-q’)(q'q”)w’Yo(q’,w’), (529

In deriving the first right-hand-side terms of Eq56) and

B8 1 (57), one encounters the long-wavelengti¢0) RPA di-

Lo " 2 electric functions[17(c)] €y(q',0)=1+(x/q’') and ey(q

Aald’ )= (a-g )3(W) P KRN R e e A AL
©) ©) is the effective Fermi-Thomas wave number. In the weakly

fr(K[1-=177(k)] (524 degenerate quantum domains= kp(1— Ber/2), wherexp

o' —(hIm*)(q"-k)’ =2mne’B is the classical Debye wave number. In E@5)
and(57), we have introduced the modified plasma parameter

Now rewrite the weak-coupling, long-wavelength value of ¥~ KZ/_(an):2r§_[1_?XP(_B'EF);“?’CI(l__BEF)<1; Its

Keer value in the classical limity,= xg/(27n), is customarily
used whenever a large number of particles populate the De-

bye circle, i.e., whenevey,<1. We have imposed the cus-

Ko(d—0.0) tomary max= «/ y~1/3e? inverse-impact-parameter cutoff to
2 q-q'\ (= avoid the familiar 2D logarithmic divergence also encoun-
= “m,B_NE (W) j do'é (') tered in the calculation of the 2D correlation energy from the
q-0~"" o o

Debye-Huckel structure functidr22]. This divergence arises
because in two dimensions the RPA treatment breaks down

Xolq' 00, ) Xolq', 0" d" ) in the neighborhood of an electron where the induced

€(q",0")€(q",0")  €(q",0")é(q", @) charges exceed the background density. Equatifs (56),
(53 (57), and (58) combine to give the smal}- VAA coupling
correction
in the more convenient form 9

~(QKo(4—0.0)= g5 5 [RF R Mw)], (60

3 .

1 ]
Ko(q—0,0)= B ]2::1 STh(a—=00), (54 R 5y Iny— Sy, (61)
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dyn, —
9"10 w ) 8N

v2(q" ) Ho(q' ).

q'<s«ly

(62

To make contact with the® sum rule, we observe that at
frequencies high compared with the plasmon frequency

, nq'? Xo(q',0)

Ho(q .wﬂw)~wm- (63
The high-frequency expansion
ng®  ng® [(#g®)? (Ekn)o
XSC(qJ‘)HOO): m* wz + m*w4 (Zm* +3q2 mI:
2
q 1
+ _,Bm* mgtat +0 E) (64)

then follows from Egs(29) and (60)—(63). In the classical

limit, Eq. (64) reproduces the exact sum-rule expansion

[17(b),(c)] for x(q,w—) if and only if [q%/(Bm* )R> is
identified as they—0, yy<1 value ofD°(q), the term in

the classicakw® sum-rule coefficient that portrays non-RPA
particle correlations. This identification is easily verified by

using D%(q—0)=5q%(E.)/(8m*) with the correlation en-
ergy from Totsuji's cluster-expansion formyla3]

B(E (7e)= 3 [In(2) +0.1544

65
(yy=Kkdl(2mn)=2mne*p2<1) (63

for the classical 2D electron gas. One readily obtains

2

5q
D3(a—0)= o= 7elIn 74 +0.8475,  (66)

in agreement with g%/ (8m* )93 through ordery In vy

in the dominant term. But we have already noted that the

VAA reproduces the potential energy part of & sum rule
in the weakly degenerate quantum domainddvitrary val-
ues of the coupling parametEr=e?/(a(Ey,)o). It is there-
fore quite natural to identifyq?/(Bm*) |RS®(T") as the Eq.
(35 D(gq—0) for I' arbitrary [see Eq.(67b below]. The

PHYSICAL REVIEW E 64 046125

R ) =

gN > P@OH( ), (670
q/

Xsc(q,7w,)XSC(q’1w_w,)
e(q',w')e(q’,w—w’)
(670

This completes the stage-3 development of the VAA-DSA
theory.

Equations(29) and (67) combine into a self-consistent
expression forys{q— 0,0) with correlation energy data in-
put from available Monte CarlgMC) experiments and/or
hypernetted chaifHNC) calculations. The actual task of
solving Eq.(29) with Eq. (67) at arbitrary frequencies arld
values is a formidable analytical/computational undertaking
well beyond the scope of the present paper. At long wave-
lengths, however, it turns out that the express{émc is
amenable to analysis in the neighborhood of the plasma fre-

H(q’,w)ZJide’é_(w')

quencyw,p(q) =[27ne?q/(esm*)]¥2 making it possible to
establish a tractable formula for the real part of the plasmon
frequencyw(g—0) for I" values such thatgeg)I" ;<1 [see
Sec. Ill. The analysis of Sec. VI elaborates on this.

VI. PLASMON DISPERSION

The dispersion relation for the longitudinal plasma mode
is derived from the zeros of the dielectric response function
(0, 0(0))=1-v(q) xsdq, (), (68)
with yc given by Egs(29) and (67).
At long wavelengths, we observe thaf?(w?) is at most
of O(q) smallness in the vicinity of the plasmon frequency.

With this in mind, the development of E(R9) with Eq. (67)
in powers of % w?) gives

2 2
w5p(d) 3q
€(g—0w)=1-———| 1+ m*w2<Ekin>0
2
stat dyn
+’8m*w2[9‘{ + R (w)]).

(69

zero subscript is accordingly dropped here and in the follow-
ing to reflect this hypothesis. This latter identification, in To further evaluateR®"(w), we observe that for smati,
fact, is subsumed in the following closure hypothesis reH(q’,) can be Taylor expanded about=0 as follows:
ferred to as the dynamical superposition approximation: Egs.

(29) and (49) are made self-consistent by postulating that aH (@, @(@))~H(q", w2p(d))
decomposition of the quadratigs in terms of linear ones,

which prevails in the ¢/ w)— 0 limit for weak coupling, can =ReH(q',0) +iw,p(q) iIm H(q', )
be relied upon as a paradigm for arbitrary coupling. Accord- Jo ©=0
"o po YO
q? . “ 2| (g0 | 0 Vg
V(@) Ksdq—0,0) = — ————5 [ R4 R w)],
pmw = do' 4 xsdd' ') ]?
(673 X Pf — | ImM—— (70
w0 Jw e(q,w")
R BV(N,T) =35 B(Ex)(n,T) +(E(n,T)],
(67b whence
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ReRM(w(q))=ReRM" is well beyond the scope of the present paper. However,
o Eq. (72) can be readily evaluated in thlie—0 limit for vy
__ 1 S ,)[Xsc(q ,0)} <1; wusing the Vlasov formula Ing(q’,@')=
16N, 55 TN eq0 | —(Bnw/q")JrBmi2 exd — Bmw'?(29'%)] and approximat-

71 ing e(q',w") by its static RPA value, one obtains

mm
1 |mmdyn(w(q))| ™~ " a5~ YaNA/ kp. (74)
|mmdyn(w(q))|corr%_U‘)ZD(Q)ME Vz(q,) © 32 . °
q!
><pfOo _da)'i,[ Xsc(q,aw,)

e @ dw e(q,m")

We will return to Eq.(74) shortly when we discuss plasmon
damping.

For calculation of the plasmon frequency, E(&8), (69),
and(67b) combine to give the biquadratic dispersion relation

2

(72)
The steps in the derivation of E¢70) are detailed in the 4 2 2 2 2 2
Appendix. Again, theq,ax cutoff in Eq. (71) is imposed to "~ wpp(Q) 0"~ w3p(d)s°4"=0, (75)
avoid the ubiquitous 2D logarithmic divergence arising from (Eido 5 V
the RPA-like structure of the quadratic response function in- 2=3 "': 0, = — + — RN, (76)
herent in the closure hypothes[§o detect the divergence, m 8m Bm

go to the classical limit, replaces{q’,0)/e(q’,0) with
—BnY(q’) via the fluctuation-dissipation theorem, and then
observe that the latter tends ton asq’'—«]. ForI'<1
one customarily chooses,,,=«/y as before, whereas for
I'>1 one chooseq,,x=1/a. Concentrating on the latter do- Rew(q)=
main, we observe thats{q’,0) ande(q’,0) can be reason-

ably well approximated by the compressibility formulas

Addressing the dispersion part of the calculation, we solve
Eq. (75) for the real part to obtain

w,p(d)

[1+1+4s7q% wip(q) ]2 (773

s7q°
X2 q' —0,0=0)=—n(aP/on) 1 * =Dt 5 (770
and where
€% q' —»0,0=0)=1+v(q")n(dP/on) ;* s2=Res?=3((Eyn)o/M* )+ 5V/(8m*) + (1/8m* ) ReR™

over most of the summation intervaky’<1/a. Substitut- Equation(77b) follows from the smallg expansion of the
ing these expressions into EJ.1) and performing the sum- radical in Eq.(778. Equations(77), (76), and(73) describe
mation, one obtains the long-wavelength plasmon dispersion in weakly degener-
ate (Beg<0.2) 2D Coulomb fluids over a wide range bf
values such thatfeg)I' is of order unity at most. A given
pair of (T',Ber) values determines th€E,; o, (E,e), and
inverse compressibility{P/dn)+ inputs via Eqs(78)—(81)
and (83) below. While Monte Carld24,25 simulations and
r 5. hypernetted chain [26] calculations have generated
+ 8B(aPIan){[ B(dPIn)t+2T 4] (73 correlation-energy data for the 2D electron liquid in the clas-

sical [24,26 and zero-temperature quantumi5] domains,

little, if any, such data are available at arbitrary degeneracy.
The expression(73) is bounded for alll’=1; this is true  For (Beg)ma=0.1—0.2, however, fairly reliable formulas for
even at thel value whereB(dP/dn);=0: RY"'=-1/64. the interaction energy can be constructed either from the
The expressior(72) for ImR¥(w(q)) provides the VAA-  purely classical MC formula of Totsuj23] or from Lado’s
DSA correlation-induced damping of the plasmon modeHNC formula[26]. This is accomplished simply by adding a
Evaluating Eq.(72) at arbitrary coupling would entail solv- temperature-dependent exchange contribution. The modified
ing Eqg.(29) with Eq. (67), which, as we have already stated, formulas for the exchange-correlation energy are

ReRMN~ — Fg' [ ’B(L/OM)T

8[B(oPIon).]% 2T

— 1.1 4+0.70r'¥*-0.38+ B(E)(n,T) (0.70<T4<50), (78)

AVINTI=) L1 0950+ 0.9854 B(E,)(n,T) (I'q>30), (79
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with the exchange energy given by the asymptotic formula
[27]

(E)(n,T)=0.632/Ber(E,)(n,T=0) (80)

in terms of the Hartree-Fock exchange energy per paftridle

c T_o)— 4v72 €2
(Ex)(n,T= )——gg-

(81)
The inverse isothermal compressibility input to E@3) is
calculated from theapproximate2D equation of state for-
mula

P=n(Exn)ot+ 3N(Ex(n,T)+3n(Ec)(n,T) (82
that is exact in the classical limftL7(c)] and that best ac-
commodates use of the fitted formulé&) and (79). From
Eq. (82), it can be shown that

P €r d 2 1
(a_n) e 2 ENMTFHEN (T
)

1%
(143 Ber)+ 2o n(3(E(N T+ 3(EHNT)

(83

=

valid for (Begr)max=0.1—0.2 and arbitraryi’. One cannot
overstate the centrality of the® sum rule in the VAA-DSA
description of plasma-mode dispersion: our calculations re-
veal that|ReRM" (w(q))|<(5/8)8|V| for all T values, sug-
gesting that the coupling correction to the long-wavelength
RPA plasma-mode dispersion is entirely controlled by the
potential energy part of the third-frequency-moment sum-
rule coefficient.

Dispersion curves based on E{.7a are displayed in
Figs. Xa), 1(b), and 2 for the weakly degenerate and classi-
cal 2DCFs. The exceedingly thin RPA linewidths shown in
Figs. 3 and 4 confirm that the 2D plasma waves are virtuallf
unaffected by Landau damping at long wavelengths. As ext
pected, the effect of the static exchange-correlation hole ac
to depress the long-wavelength plasmon frequency below i
RPA value, the deviation increasing with increasiigor

fixed Ber. Here the correlational contribution plays the a5 hypothesis[Eq. (20)], the QFDT[Egs. (9) and (10)],
and the DSA closure hypothediEq. (67)]. The VAA-DSA
dynamicallocal field correction

KSC(qiw)
Xo(Q,0)[1—v(q)K(q, )]’

dominant role. For example, #gter=0.2 andl’=5 the ex-
change comprises 16—18% of the deviation darranging
from 0.1 to 0.5; atl'=10, its effect diminishes slightly to
14.9-17.4 % over the sant@a range.

VII. CONCLUSIONS AND DISCUSSION

In this paper, we have analyzed the dynamical respons@ith screened coupling correctioks(q,») given by Eq.
and long-wavelength plasmon dispersion in the strongly67). provides the correspondence between @) and the

w/wg

w/w,

(b)

FIG. 1. (a) Plasmon dispersion curves f@e-=0.2 andl'=5.

The solid line, calculated from E@773, takes account of the static
xchange-correlation effect. The dash-dotted line portrays the dis-
ersion without the exchange and the dotted line is the RPA curve.
b) Plasmon dispersion curves f@ter=0.2 andI’=10 with the

olid line calculated from Eq773. The dash-dotted line leaves out

e exchange and the dotted line is the RPA curve.
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coupled 2DCF in the weakly degenerate quantum domairgonventional mean field theory formula

Adopting the Ref[15] methodology, we have developed a
self-consistent approximation schemEq. (29) with Eq.
(67)] for calculation of the screened density response func-
tion ys{g,w) at long wavelengths. The basic ingredients in

the construction of the approximation scheme are the first The D(q) term in the high-frequency expansi¢82) of
xM(q,w) is identified as precisely the term in the third-

kinetic equation in the BBGKY hierarchjEq. (19)], the
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FIG. 2. Plasmon dispersion curves in the classical domain for FIG. 4. RPA linewidths afi’=5, 10, and 40 in the classical
I'=5, 10, and 40. The solid lines, calculated from Ed7a, take domain.
account of the static correlation effectl’ =5 labels the upper solid
line, I'=10 the middle line, and’ =40 the bottom line. The dash- trally important element in the description of the coupling
dotted lines are the corresponding RPA curves with the sBme correction to the long-wavelength 2D-plasmon dispersion
value ordering. and (ii) gives a prescription for going beyond the RPA dy-

namics of single particle-hole pair excitatiodandau

frequency-moment sum-rule coefficiefit7(a),(d)] that ac- damping by taking account of Coulomb correlation-induced
counts for exchange and correlation through the two-poinelamping[see Eq.(86) below].
static structure functionsee Eq(33)]; at long wavelengths, A few remarks about plasma-mode damping in the classi-
D(g—0) is proportional to the potential energy per particle.cal limit and at weak couplingy;<1), which could have
Given the complete lack 08(q) data for the 2DCF in the relevance to the strongly coupled 2DCF in the weakly de-
weakly degenerate quantum domain, we have postulated thgenerate quantum domain. From E@4), the correlational
the long-wavelength expressid85) for D(q—0) can be damping rate is calculated to be th®(g®) coupling-
replaced by the decompositig@6) as an alternative way of dependent expression
determining the potential energy in terms of the exchange

2
and correlation energies calculated from formuiz8—(81). __ m\m 5/4 (i) — 2mne(ma)
The VAA-DSA G(q,®), in contrast to the conventional M ©(Q) =~ Samg5 Vel @o Kp ©o=\2mne’/(ma).
[3,7,8,9 and quantum[12] STLS local field corrections, (86)

which do not satisfy the third-frequency-moment sum rule

(i) features thaw® sum-ruleD(q—0) coefficient as the cen- This result differs markedly from the damping rate predicted

some time ago by TotsujR3] and later confirmed by Lu and
Golden in an independent calculati®8]. Using a semiphe-

0 ' ' nomenological approach based on the Vlasov-Boltzmann
equation, Totsuji's calculation reveals the existence of a
lower-order overallO(q) coupling-independent collisional
damping which survives even in the,=0 limit and which

is accompanied by an upward shift in the Bohm-Gross plas-
mon dispersion, viz.,

—-10 +

()~ 070(Q) 1+<%+B>K1D—iA¢wq/KD NEY)

log,,(Aw/w,)

-20 |
where the collisional damping coefficieAt= =, and where
the concomitant collision-induced dispersion coefficiént
=21m/256. Using a systematic formal expansiam vy, of
the first two equations in the BBGKY hierarchy, Lu and
Golden[28] arrive at the same structuf87) in the y4=0
limit with A=3$ andB=7#/128.[Satisfaction of thes® sum
ga rule is still assured since

-30

FIG. 3. RPA linewidths aBe-=0.2 andl'=5, 10. €col(g—0,0; 74=0)=€e(q—0,w; v4=0) — €5(q— 0,w)
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=i(N7lH[ wap(@) 0]°(q/ kp)Y2]

By contrastA=0=B in the RPA (y=0) limit of the present
VAA-DSA mean field theory. IndeedA=0=B for all 2D

PHYSICAL REVIEW E 64 046125

and plasmon dispersion in the 2DCF in the strongly degen-
erate quantum domain. Kalman and Romf28l] have com-
pleted the first two stages of the quantum VAA calculation
for the zero-temperatur@ DCF. Some progress was made in

mean field theories in the classical and quantum domainshe stage-3 development in that they calculated the Lindhard
This irreconcilable disparity is a consequence of the fact thaguadratic density response function equivalent of our Eq.
mean field theories do not take account of short-range dy(51). Their far more involved expression, however, suggests
namic collisions. The survival of the collisional effect in the that the final step of establishing a quantum equivalent of the
y=0 limit is related to the fact that, in two dimensions, the psa closure scheme is a formidable task well beyond the
mean particle-particle collision frequeng@mne?kp/m]Y2 scope of the present paper.
turns out to be entirely independent of the plasma parameter.
This obtains even when calculated under the usual weak-
coupling assumption that a test particle interacts weakly with
a large population of field particles inside the Debye circle.
Given the possibility of the interesting smal/128 up- This work was partially supported by the U.S. Department
ward shift, we expect that the VAA-DSA description of long- of Energy Grant No. DE-FG02-98ER54491 under the NSF/
wavelength plasmon dispersion is most accurate ITgy, DOE Partnership in Basic Plasma Science and Engineering.
~5, beyond which short-range dynamic collisional effectsk.l.G. thanks the Department of Theoretical Physics, Insti-
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APPENDIX
In this Appendix, we detail the steps in the evaluation of the first right-hand-side member @OEdMe begin by writing
Eqg. (67d in the more convenient form

Xsc(q,vw,)
e(q,0")

» do' Xsc(q,!w_w,)
e(q,0o—w")

1
H(q’,w)=;PJ (A1)

’
— W

Replacement of Ifivs{q’,w")/e(q’,w)] by its Hilbert transforr{HT) accompanied by a partial fraction expans{®fE and
application of the PoincarBertrand(PE) theorem gives

1 » do' o do” /’ ! /, ”

—w 0’ —0" €9, 0—0')  &q,0")

(HT)

1 N do”  xsdd',o—0')  xsdd' ")
_?pr_wdw f_xw//(w/_w//) 6(q’,(1)_(1)’) Re E(q,,w”) (PFB
1 * * dv Xsdd' ) Xsdd',v)
:——PPJ d f ——Re=——,
w2 ) LT v(utv—o0) ed ) e v)
:Xs&CI'1w)Xsc(q/,0)_iPPf°°ﬂf‘” du xsdq'm) o xsd9',v) (PB)
€q,0)e@,0 w2 ) uv Jeptv—o &q.u) - eq.v)
Xsdd', ) xsd{q",0) 1 Jx du Jw dv Xsdd',v) XsdQ' ) .
- , . +—pPpP| —— : Re : ; interchange.
(@ e w2 ) ey dan @ Y 9
(A2)
Consequently,
Xsc(q,vw))(sc(q,ao) [ jw du Xsc(q’!w_ﬂ) Xsc(q/wu')
H /’ — - - —_ —_ n RG 7 A3
(@) we@ 0 7 ) @ " eq (A3)
by application of the Hilbert transformation to E@A2). From Eqs.(Al) and(A3), it can then be shown that
_i_PF dp xsdd' 0~ p)xsdd' ) _ xsdd'@)xsdd",0) Ad)
7 Jowo—p € o-—p)e(qun)  €(q,0)eq’0)
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Equation(A4) combined with

N N C R C: C )
H(q ,o)—WPJ_m m Re @ ) Im ) (A5)

then gives
1 xsd0'0)]?
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